Reducing Slip Risk: A Feasibility Study of Gait Training with Semi-Real-Time Feedback of Foot–Floor Contact Angle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. FFCA Training
2.4. Three-Dimensional (3-D) Motion Collection and Processing
2.5. Outcome Measures and Data Analysis
2.5.1. Comparison of FFCA across Experimental Sessions
2.5.2. Comparison of FFCA Computed Using IMU, 3D Motion Capture, and Force Platforms
2.5.3. Joint Coordination Profile Analysis
2.6. Statistical Analysis
3. Results
3.1. Effects of Semi-Real-Time Feedback System on FFCA during Walking
3.2. Gait Kinematics and Coordination Changes Pre- and Post-Training
3.3. Comparison of FFCA Values Computed based on IMU, Vicon, and GRF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luukinen, H.; Herala, M.; Koski, K.; Honkanen, R.; Laippala, P.; Kivelä, S.-L. Fracture risk associated with a fall according to type of fall among the elderly. Osteoporos. Int. 2000, 11, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-R.; Leclercq, S.; Lockhart, T.E.; Haslam, R. State of science: Occupational slips, trips and falls on the same level. Ergonomics 2016, 59, 861–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagano, H.; Sparrow, W.; Begg, R.K. Biomechanical characteristics of slipping during unconstrained walking, turning, gait initiation and termination. Ergonomics 2013, 56, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Chambers, A.J.; Margerum, S.; Redfern, M.S.; Cham, R. Kinematics of the foot during slips. Occup. Ergon. 2002, 3, 225–234. [Google Scholar] [CrossRef]
- Cham, R.; Redfern, M.S. Changes in gait when anticipating slippery floors. Gait Posture 2002, 15, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Moyer, B.; Chambers, A.; Redfern, M.S.; Cham, R. Gait parameters as predictors of slip severity in younger and older adults. Ergonomics 2006, 49, 329–343. [Google Scholar] [CrossRef]
- Moyer, B.; Redfern, M.; Cham, R. Biomechanics of trailing leg response to slipping-Evidence of interlimb and intralimb coordination. Gait Posture 2009, 29, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Cham, R.; Redfern, M.S. Heel contact dynamics during slip events on level and inclined surfaces. Saf. Sci. 2002, 40, 559–576. [Google Scholar] [CrossRef]
- Hatton, A.L.; Sturnieks, D.L.; Lord, S.R.; Lo, J.C.; Menz, H.B.; Menant, J.C. Effects of nonslip socks on the gait patterns of older people when walking on a slippery surface. J. Am. Podiatr. Med. Assoc. 2013, 103, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.Z.-H.; Lam, W.-K.; Chang, B.-C.; Lee, W.C.-C. Can Insoles Be Used to Improve Static and Dynamic Balance of Community-Dwelling Older Adults? A Systematic Review on Recent Advances and Future Perspectives. J. Aging Phys. Act. 2020, 28, 971–986. [Google Scholar] [CrossRef]
- Meehan, E.E.; Vidic, N.; Beschorner, K.E. In contrast to slip-resistant shoes, fluid drainage capacity explains friction performance across shoes that are not slip-resistant. Appl. Ergon. 2022, 100, 103663. [Google Scholar] [CrossRef]
- Iraqi, A.; Cham, R.; Redfern, M.S.; Vidic, N.S.; Beschorner, K.E. Kinematics and kinetics of the shoe during human slips. J. Biomech. 2018, 74, 57–63. [Google Scholar] [CrossRef]
- Lee, A.; Bhatt, T.; Pai, Y.-C. Generalization of treadmill perturbation to overground slip during gait: Effect of different perturbation distances on slip recovery. J. Biomech. 2016, 49, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Chambers, A.J.; Perera, S.; Cham, R. Changes in walking characteristics of young and older adults when anticipating slippery floors. IIE Trans. Occup. Ergon. Hum. Factors 2013, 1, 166–175. [Google Scholar] [CrossRef]
- Lee, B.C.; Kim, J.; Chen, S.; Sienko, K.H. Cell phone based balance trainer. J. Neuroeng. Rehabil. 2012, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Sienko, K.H.; Balkwill, M.D.; Wall, C. Biofeedback improves postural control recovery from multi-axis discrete perturbations. J. Neuroeng. Rehabil. 2012, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.Z.-H.; Chung, A.K.-L.; Ling, Y.T.; Huang, Z.-H.; Cheng, C.L.-K.; Zheng, Y.-P. A Newly-Developed Smart Insole System with Instant Reminder: Paves the Way towards Integrating Artificial Intelligence (AI) Technology to Improve Balance and Prevent Falls. Age Ageing 2019, 48, iv28–iv33. [Google Scholar] [CrossRef]
- Sienko, K.; Whitney, S.; Carender, W.; Wall III, C. The role of sensory augmentation for people with vestibular deficits: Real-time balance aid and/or rehabilitation device? J. Vestib. Res. 2017, 27, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Sienko, K.H.; Seidler, R.D.; Carender, W.J.; Goodworth, A.D.; Whitney, S.L.; Peterka, R.J. Potential mechanisms of sensory augmentation systems on human balance control. Front. Neurol. 2018, 9, 944. [Google Scholar] [CrossRef]
- Shull, P.B.; Damian, D.D. Haptic wearables as sensory replacement, sensory augmentation and trainer—A review. J. Neuroeng. Rehabil. 2015, 12, 59. [Google Scholar] [CrossRef] [Green Version]
- Bao, T.; Klatt, B.N.; Carender, W.J.; Kinnaird, C.; Alsubaie, S.; Whitney, S.L.; Sienko, K.H. Effects of long-term vestibular rehabilitation therapy with vibrotactile sensory augmentation for people with unilateral vestibular disorders—A randomized preliminary study. J. Vestib. Res. 2019, 29, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Bao, T.; Carender, W.J.; Kinnaird, C.; Barone, V.J.; Peethambaran, G.; Whitney, S.L.; Kabeto, M.; Seidler, R.D.; Sienko, K.H. Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: A randomized preliminary study. J. Neuroeng. Rehabil. 2018, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.Z.-H.; Wan, A.; Wong, D.; Zheng, Y.-P.; Lee, W. A vibrotactile and plantar force measurement-based biofeedback system: Paving the way towards wearable balance-improving devices. Sensors 2015, 15, 31709–31722. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.Z.-H.; Lee, W.C.-C. A wearable vibrotactile biofeedback system improves balance control of healthy young adults following perturbations from quiet stance. Hum. Mov. Sci. 2017, 55, 54–60. [Google Scholar] [CrossRef]
- Ma, C.Z.-H.; Wong, D.; Lam, W.; Wan, A.; Lee, W. Balance improvement effects of biofeedback systems with state-of-the-art wearable sensors: A systematic review. Sensors 2016, 16, 434. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.Z.; Wan, A.H.; Wong, D.W.; Zheng, Y.-P.; Lee, W.C. Improving postural control using a portable plantar pressure-based vibrotactile biofeedback system. In Proceedings of the 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 8–10 December 2014; pp. 855–860. [Google Scholar]
- Sienko, K.H.; Balkwill, M.D.; Oddsson, L.I.; Wall, C. The effect of vibrotactile feedback on postural sway during locomotor activities. J. Neuroeng. Rehabil. 2013, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Gordt, K.; Gerhardy, T.; Najafi, B.; Schwenk, M. Effects of wearable sensor-based balance and gait training on balance, gait, and functional performance in healthy and patient populations: A systematic review and meta-analysis of randomized controlled trials. Gerontology 2018, 64, 74–89. [Google Scholar] [CrossRef]
- Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture 2014, 40, 11–19. [Google Scholar] [CrossRef]
- Richards, R.; van den Noort, J.C.; Dekker, J.; Harlaar, J. Gait retraining with real-time biofeedback to reduce knee adduction moment: Systematic review of effects and methods used. Arch. Phys. Med. Rehabil. 2017, 98, 137–150. [Google Scholar] [CrossRef]
- Ma, C.Z.-H.; Zheng, Y.-P.; Lee, W.C.-C. Changes in gait and plantar foot loading upon using vibrotactile wearable biofeedback system in patients with stroke. Top. Stroke Rehabil. 2018, 25, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Bao, T.; Lee, U.H.; Kinnaird, C.; Carender, W.; Huang, Y.; Sienko, K.H.; Shull, P.B. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: Proof-of-concept. J. Neuroeng. Rehabil. 2017, 14, 102. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Oliveira, N.; Ehrenberg, N.; Cheng, J.; Bentley, K.; Blochlinger, S.; Shoval, H.; Barrance, P. Feasibility of a real-time pattern-based kinematic feedback system for gait retraining in pediatric cerebral palsy. J. Rehabil. Assist. Technol. Eng. 2021, 8, 20556683211014125. [Google Scholar] [CrossRef] [PubMed]
- Schließmann, D.; Nisser, M.; Schuld, C.; Gladow, T.; Derlien, S.; Heutehaus, L.; Weidner, N.; Smolenski, U.; Rupp, R. Trainer in a pocket-proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients. J. Neuroeng. Rehabil. 2018, 15, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shull, P.B.; Lurie, K.L.; Cutkosky, M.R.; Besier, T.F. Training multi-parameter gaits to reduce the knee adduction moment with data-driven models and haptic feedback. J. Biomech. 2011, 44, 1605–1609. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Andrews, A.W. Normal walking speed: A descriptive meta-analysis. Physiotherapy 2011, 97, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Bello, O.; Sánchez, J.A.; Lopez-Alonso, V.; Márquez, G.; Morenilla, L.; Castro, X.; Giraldez, M.; Santos-García, D.; Fernández-del-Olmo, M. The effects of treadmill or overground walking training program on gait in Parkinson’s disease. Gait Posture 2013, 38, 590–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shull, P.B.; Zhu, X.; Cutkosky, M.R. Continuous Movement Tracking Performance for Predictable and Unpredictable Tasks With Vibrotactile Feedback. IEEE Trans. Haptics 2017, 10, 466–475. [Google Scholar] [CrossRef]
- Bourgaize, S.; Cinelli, M.; Berton, F.; Niay, B.; Hoyet, L.; Olivier, A.-H. Walking speed and trunk sway: Influence of an approaching person’s gait pattern on collision avoidance. J. Vis. 2021, 21, 2023. [Google Scholar] [CrossRef]
- Sparrow, W.; Donovan, E.; Van Emmerik, R.; Barry, E. Using relative motion plots to measure changes in intra-limb and inter-limb coordination. J. Mot. Behav. 1987, 19, 115–129. [Google Scholar] [CrossRef]
- Chang, R.; Van Emmerik, R.; Hamill, J. Quantifying rearfoot–forefoot coordination in human walking. J. Biomech. 2008, 41, 3101–3105. [Google Scholar] [CrossRef]
- Vidal, A.; Wu, W.; Nakajima, M.; Becker, J. Investigating the constrained action hypothesis: A movement coordination and coordination variability approach. J. Mot. Behav. 2018, 50, 528–537. [Google Scholar] [CrossRef]
- Button, C.; Davids, K.; Schollhorn, W. Coordination profiling of movement systems. Mov. Syst. Var. 2006, 133–152. [Google Scholar]
- Needham, R.A.; Naemi, R.; Hamill, J.; Chockalingam, N. Analysing patterns of coordination and patterns of control using novel data visualisation techniques in vector coding. Foot 2020, 44, 101678. [Google Scholar] [CrossRef]
- Xu, J.; Lee, U.H.; Bao, T.; Huang, Y.; Sienko, K.H.; Shull, P.B. Wearable sensing and haptic feedback research platform for gait retraining. In Proceedings of the 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, The Netherlands, 9–12 May 2017; pp. 125–128. [Google Scholar]
- Karatsidis, A.; Richards, R.E.; Konrath, J.M.; Van Den Noort, J.C.; Schepers, H.M.; Bellusci, G.; Harlaar, J.; Veltink, P.H. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset. J. Neuroeng. Rehabil. 2018, 15, 78. [Google Scholar] [CrossRef]
- Drużbicki, M.; Przysada, G.; Guzik, A.; Brzozowska-Magoń, A.; Kołodziej, K.; Wolan-Nieroda, A.; Majewska, J.; Kwolek, A. The efficacy of gait training using a body weight support treadmill and visual biofeedback in patients with subacute stroke: A randomized controlled trial. BioMed Res. Int. 2018, 2018, 3812602. [Google Scholar] [CrossRef] [Green Version]
- Gama, G.L.; Celestino, M.L.; Barela, J.A.; Forrester, L.; Whitall, J.; Barela, A.M. Effects of gait training with body weight support on a treadmill versus overground in individuals with stroke. Arch. Phys. Med. Rehabil. 2017, 98, 738–745. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Hamill, J.; Busa, M.A.; van Emmerik, R.E. Changes in coordination and variability during running as a function of head stability demands. Hum. Mov. Sci. 2020, 73, 102673. [Google Scholar] [CrossRef]
- DeBerardinis, J.; Trabia, M.B.; Dufek, J.S.; Le Gall, Y.; Da Silva Sacoto, N. Enhancing the Accuracy of Vertical Ground Reaction Force Measurement During Walking Using Pressure-Measuring Insoles. J. Biomech. Eng. 2021, 143, 011010. [Google Scholar] [CrossRef]
- Elhadi, M.M.O.; Ma, C.Z.; Wong, D.W.C.; Wan, A.H.P.; Lee, W.C.C. Comprehensive gait analysis of healthy older adults who have undergone long-distance walking. J. Aging Phys. Act. 2017, 25, 367–377. [Google Scholar] [CrossRef]
- Elhadi, M.M.O.; Ma, C.Z.-H.; Lam, W.K.; Lee, W.C.-C. Biomechanical Approach in Facilitating Long-Distance Walking of Elderly People Using Footwear Modifications. Gait Posture 2018, 64, 101–107. [Google Scholar] [CrossRef] [Green Version]
Mean ± SD | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline Session (S1) | Verbal Instruction Session (S2) | Feedback Training Session (S3) | Post-Training Session (S4) | Friedman Test (4 Sessions) | Planned Comparison (Wilcoxon Signed Ranks Test) | |||||
S1 vs. S2 | S1 vs. S3 | S1 vs. S4 | S2 vs. S3 | |||||||
Treadmill | Percentage of desirable FFCA 1 | 53.9 ± 14.8% | 45.9 ± 27.5% | 66.9 ± 15.0% | 75.8 ± 10.9% | <0.001 * | 0.227 | 0.028 * | 0.027 * | 0.249 |
FFCA (°) | 9.9 ± 2.2 | 9.2 ± 3.4 | 13.7 ± 0.5 | 13.0 ± 1.4 | <0.001 * | 0.761 | 0.028 * | 0.075 | 0.028 * | |
SD of FFCA | 6.5 ± 3.2 | 4.6 ± 1.2 | 5.4 ± 1.1 | 5.3 ± 2.6 | 0.009 * | 0.311 | 0.463 | 0.046 * | 0.027 * | |
CV of FFCA | 66.5% ± 27.0% | 55.0% ± 20.5% | 39.4% ± 8.3% | 42.2% ± 25.2% | 0.020 * | 0.457 | 0.028 * | 0.028 * | 0.075 | |
Speed (m/s) | 0.743 ± 0.013 | 0.740 ± 0.023 | 0.697 ± 0.085 | 0.744 ± 0.011 | <0.001 * | 0.046 * | 0.176 | 0.866 | 0.499 | |
Gait cycle time (s) | 1.278 ± 0.043 | 1.245 ± 0.064 | 1.267 ± 0.061 | 1.273 ± 0.070 | <0.001 * | 0.091 | 0.612 | >0.999 | 0.866 | |
Stride length (m) | 0.951 ± 0.038 | 0.922 ± 0.052 | 0.886 ± 0.121 | 0.948 ± 0.053 | <0.001 * | 0.046 * | 0.176 | 0.866 | 0.499 | |
Stride width (m) | 0.1408 ± 0.0379 | 0.1427 ± 0.0338 | 0.1430 ± 0.0382 | 0.1434 ± 0.0479 | 0.713 | - | - | - | - | |
Overground | Percentage of desirable FFCA 1 | 26.4% ± 20.7 | 35.0% ± 22.7 | - | 43.3% ± 25.6 | - | 0.895 | - | 0.075 | - |
FFCA (°) | 20.9 ± 4.7 | 16.7 ± 4.9 | - | 19.1 ± 3.0 | - | 0.058 | - | 0.093 | - | |
SD of FFCA | 5.7 ± 2.1 | 6.5 ± 0.9 | - | 6.9 ± 1.3 | - | 0.979 | - | 0.173 | - | |
CV of FFCA | 29.0% ± 14.1 | 40.8% ± 10.1 | - | 36.0% ± 3.9% | - | 0.809 | - | 0.249 | - | |
Speed (m/s) | 1.272 ± 0.101 | 1.099 ± 0.147 | - | 1.190 ± 0.104 | - | 0.063 | - | 0.237 | - | |
Gait cycle time (s) | 1.085 ± 0.045 | 1.157 ± 0.073 | - | 1.146 ± 0.057 | - | 0.043 * | - | 0.063 | - | |
Stride length (m) | 1.422 ± 0.116 | 1.302 ± 0.114 | - | 1.360 ± 0.093 | - | 0.063 | - | 0.237 | - | |
Stride width (m) | 0.1434 ± 0.0495 | 0.1427 ± 0.0393 | - | 0.1374 ± 0.0386 | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.Z.-H.; Bao, T.; DiCesare, C.A.; Harris, I.; Chambers, A.; Shull, P.B.; Zheng, Y.-P.; Cham, R.; Sienko, K.H. Reducing Slip Risk: A Feasibility Study of Gait Training with Semi-Real-Time Feedback of Foot–Floor Contact Angle. Sensors 2022, 22, 3641. https://doi.org/10.3390/s22103641
Ma CZ-H, Bao T, DiCesare CA, Harris I, Chambers A, Shull PB, Zheng Y-P, Cham R, Sienko KH. Reducing Slip Risk: A Feasibility Study of Gait Training with Semi-Real-Time Feedback of Foot–Floor Contact Angle. Sensors. 2022; 22(10):3641. https://doi.org/10.3390/s22103641
Chicago/Turabian StyleMa, Christina Zong-Hao, Tian Bao, Christopher A. DiCesare, Isaac Harris, April Chambers, Peter B. Shull, Yong-Ping Zheng, Rakie Cham, and Kathleen H. Sienko. 2022. "Reducing Slip Risk: A Feasibility Study of Gait Training with Semi-Real-Time Feedback of Foot–Floor Contact Angle" Sensors 22, no. 10: 3641. https://doi.org/10.3390/s22103641
APA StyleMa, C. Z.-H., Bao, T., DiCesare, C. A., Harris, I., Chambers, A., Shull, P. B., Zheng, Y.-P., Cham, R., & Sienko, K. H. (2022). Reducing Slip Risk: A Feasibility Study of Gait Training with Semi-Real-Time Feedback of Foot–Floor Contact Angle. Sensors, 22(10), 3641. https://doi.org/10.3390/s22103641