Influence of the Shod Condition on Running Power Output: An Analysis in Recreationally Active Endurance Runners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. Materials and Testing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lai, A.K.; Biewener, A.A.; Wakeling, J.M. Muscle-specific indices to characterise the functional behaviour of human lower-limb muscles during locomotion. J. Biomech. 2019, 89, 134–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Wang, R.; Newton, R.U.; Sutton, D.; Shi, Y.; Ding, H. Effects of complex training versus heavy resistance training on neuromuscular adaptation, running economy and 5-km performance in well-trained distance runners. PeerJ 2019, 7, e6787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanley, B.; Bissas, A.; Merlino, S.; Gruber, A.H. Most marathon runners at the 2017 IAAF World Championships were rearfoot strikers, and most did not change footstrike pattern. J. Biomech. 2019, 92, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, D.E.; Venkadesan, M.; Werbel, W.A.; Daoud, A.I.; D’Andrea, S.; Davis, I.S.; Mang’Eni, R.O.; Pitsiladis, Y. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 2010, 463, 531–535. [Google Scholar] [CrossRef]
- Divert, C.; Mornieux, G.; Freychat, P.; Baly, L.; Mayer, F.; Belli, A. Barefoot-Shod Running Differences: Shoe or Mass Effect? Int. J. Sports Med. 2008, 29, 512–518. [Google Scholar] [CrossRef]
- Cochrum, R.G.; Connors, R.T.; Coons, J.M.; Fuller, D.K.; Morgan, D.W.; Caputo, J.L. Comparison of Running Economy Values While Wearing No Shoes, Minimal Shoes, and Normal Running Shoes. J. Strength Cond. Res. 2017, 31, 595–601. [Google Scholar] [CrossRef]
- Lussiana, T.; Hébert-Losier, K.; Mourot, L. Effect of minimal shoes and slope on vertical and leg stiffness during running. J. Sport Health Sci. 2015, 4, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, J.; Atkins, S.; Taylor, P.J. The Effects of Barefoot and Shod Running on Limb and Joint Stiffness Characteristics in Recreational Runners. J. Mot. Behav. 2016, 48, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Ekizos, A.; Santuz, A.; Arampatzis, A. Transition from shod to barefoot alters dynamic stability during running. Gait Posture 2017, 56, 31–36. [Google Scholar] [CrossRef]
- Shih, Y.; Lin, K.-L.; Shiang, T.-Y. Is the foot striking pattern more important than barefoot or shod conditions in running? Gait Posture 2013, 38, 490–494. [Google Scholar] [CrossRef]
- Perl, D.P.; Daoud, A.I.; Lieberman, D.E. Effects of footwear and strike type on running economy. Med. Sci. Sports Exerc. 2012, 44, 1335–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passfield, L.; Hopker, J.; Jobson, S.; Friel, D.; Zabala, M. Knowledge is power: Issues of measuring training and performance in cycling. J. Sports Sci. 2017, 35, 1426–1434. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, H.; van Megen, R. The Secret of Running: Maximum Performance Gains through Effective Power Metering and Training Analysis; Meyer & Meyer Sport: London, UK, 2017. [Google Scholar]
- García-Pinillos, F.; Latorre-Roman, P.A.; Roche-Seruendo, L.E.; García-Ramos, A. Prediction of power output at different running velocities through the two-point method with the Stryd™ power meter. Gait Posture 2019, 68, 238–243. [Google Scholar] [CrossRef]
- Cerezuela-Espejo, V.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Martínez-Cava, A.; Pallarés, J.G. Running power meters and theoretical models based on laws of physics: Effects of environments and running conditions. Physiol. Behav. 2020, 223, 112972. [Google Scholar] [CrossRef] [PubMed]
- Austin, C.; Hokanson, J.; McGinnis, P.; Patrick, S. The Relationship between Running Power and Running Economy in Well-Trained Distance Runners. Sports 2018, 6, 142. [Google Scholar] [CrossRef] [Green Version]
- Jaén-Carrillo, D.; Roche-Seruendo, L.E.; Cartón-Llorente, A.; Ramírez-Campillo, R.; García-Pinillos, F. Mechanical Power in Endurance Running: A Scoping Review on Sensors for Power Output Estimation during Running. Sensors 2020, 20, 6482. [Google Scholar] [CrossRef] [PubMed]
- García-Pinillos, F.; Roche-Seruendo, L.E.; Marcén-Cinca, N.; Marco-Contreras, L.A.; Latorre-Román, P.A. Absolute Reliability and Concurrent Validity of the Stryd System for the Assessment of Running Stride Kinematics at Different Velocities. J. Strength Cond. Res. 2021, 35, 78–84. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Soto-Hermoso, V.M.; Latorre-Román, P.; Párraga-Montilla, J.A.; Roche-Seruendo, L.E. How Does Power During Running Change when Measured at Different Time Intervals? Laryngo-Rhino-Otol. 2019, 40, 609–613. [Google Scholar] [CrossRef]
- Cerezuela-Espejo, V.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Mora-Rodríguez, R.; Pallarés, J.G. Are we ready to measure running power? Repeatability and concurrent validity of five commercial technologies. Eur. J. Sport Sci. 2020, 21, 341–350. [Google Scholar] [CrossRef]
- Weir, G.; Willwacher, S.; Trudeau, M.B.; Wyatt, H.; Hamill, J. The Influence of Prolonged Running and Footwear on Lower Extremity Joint Stiffness. Med. Sci. Sports Exerc. 2020, 52, 2608–2614. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Latorre-Román, P.A.; Ramírez-Campillo, R.; Párraga-Montilla, J.A.; Roche-Seruendo, L.E. Minimum time required for assessing step variability during running at submaximal velocities. J. Biomech. 2018, 80, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Besser, M.P.; Kmieczak, K.; Schwartz, L.; Snyderman, M.; Wasko, J.; Selby-Silverstein, L. Representation of temporal spatial gait parameters using means in adults without impairment. Gait Posture 1999, 9, 113. [Google Scholar]
- Esculier, J.-F.; Silvini, T.; Bouyer, L.J.; Roy, J.-S. Video-based assessment of foot strike pattern and step rate is valid and reliable in runners with patellofemoral pain. Phys. Ther. Sport 2018, 29, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Franz, J.R.; Wierzbinski, C.M.; Kram, R. Metabolic cost of running barefoot versus shod: Is lighter better? Med. Sci. Sports Exerc. 2012, 44, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Divert, C.; Mornieux, G.; Baur, H.; Mayer, F.; Belli, A. Mechanical Comparison of Barefoot and Shod Running. Laryngo-Rhino-Otol. 2005, 26, 593–598. [Google Scholar] [CrossRef]
- Spurrs, R.W.; Murphy, A.J.; Watsford, M.L. The effect of plyometric training on distance running performance. Eur. J. Appl. Physiol. 2003, 89, 1–7. [Google Scholar] [CrossRef]
- Halliday, D.R.; Resnick, R. Fundamentals of Physics; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Allen, H.; Coggan, A.R.; McGregor, S. Training and Racing with a Power Meter; VeloPress: Boulder, CO, USA, 2019. [Google Scholar]
- Lajoie, C.; Laurencelle, L.; Trudeau, F. Physiological Responses to Cycling for 60 Minutes at Maximal Lactate Steady State. Can. J. Appl. Physiol. 2000, 25, 250–261. [Google Scholar] [CrossRef]
- Cartón-Llorente, A.; García-Pinillos, F.; Royo-Borruel, J.; Rubio-Peirotén, A.; Jaén-Carrillo, D.; Roche-Seruendo, L.E. Estimating Functional Threshold Power in Endurance Running from Shorter Time Trials Using a 6-Axis Inertial Measurement Sensor. Sensors 2021, 21, 582. [Google Scholar] [CrossRef]
- Hall, J.P.L.; Barton, C.; Jones, P.R.; Morrissey, D. The Biomechanical Differences Between Barefoot and Shod Distance Running: A Systematic Review and Preliminary Meta-Analysis. Sports Med. 2013, 43, 1335–1353. [Google Scholar] [CrossRef]
- Albracht, K.; Arampatzis, A. Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans. Eur. J. Appl. Physiol. 2013, 113, 1605–1615. [Google Scholar] [CrossRef]
- Halvorsen, K.; Eriksson, M.; Gullstrand, L. Acute Effects of Reducing Vertical Displacement and Step Frequency on Running Economy. J. Strength Cond. Res. 2012, 26, 2065–2070. [Google Scholar] [CrossRef] [PubMed]
- Cavagna, G.A.; Heglund, N.C.; Willems, P.A. Effect of an increase in gravity on the power output and the rebound of the body in human running. J. Exp. Biol. 2005, 208, 2333–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels, J.T. A physiologist’s view of running economy. Med. Sci. Sports Exerc. 1985, 17, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Hanson, N.J.; Berg, K.; Deka, P.; Meendering, J.R.; Ryan, C. Oxygen cost of running barefoot vs. running shod. Int. J. Sports Med. 2011, 32, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squadrone, R.; Gallozzi, C. Biomechanical and physiological comparison of barefoot and two shod conditions in experienced barefoot runners. J. Sports Med. Phys. Fit. 2009, 49, 6. [Google Scholar]
- Molina-Molina, A.; Latorre-Román, P. Mercado-Palomino, E.; Delgado-García, G.; Richards, J.; Soto-Hermoso, V.M. The effect of two retraining programs, barefoot running vs increasing cadence, on kinematic parameters: A randomized controlled trial. Scand. J. Med. Sci. Sports 2022, 32, 533–542. [Google Scholar] [CrossRef]
Shod Condition | Barefoot Condition | p-Value (d) | ||
---|---|---|---|---|
FSP (n, %) ^ | RF | 8 (19.5) | 0 (0) | 0.019 |
MF | 23 (56.1) | 13 (31.8) | 0.033 | |
FF | 10 (24.4) | 28 (68.2) | 0.012 | |
CT (s) | 0.261 (0.020) | 0.252 (0.019) | <0.001 (0.46) | |
FT (s) | 0.111 (0.018) | 0.108 (0.017) | 0.053 (0.17) | |
SL (m) | 1.11 (0.15) | 1.09 (0.15) | 0.003 (0.13) | |
SF (spm) | 162.06 (8.06) | 166.99 (8.22) | <0.001 (0.59) |
Shod Condition | Barefoot Condition | p-Value (d) | |
---|---|---|---|
MPO (W) | 210.05 (44.16) | 210.73 (44.24) | 0.582 (0.02) |
MPOnorm (W/kg) | 3.07 (0.32) | 3.08 (0.32) | 0.568 (0.03) |
Form power (W) | 69.95 (12.51) | 68.28 (12.19) | 0.001 (0.14) |
Form power (%) | 33.6 (2.8) | 32.7 (2.7) | <0.001 (0.33) |
Running effectiveness | 0.95 (0.05) | 0.97 (0.06) | 0.006 (0.36) |
Leg Stiffness (kN/m) | 10.26 (1.86) | 10.65 (1.93) | 0.002 (0.20) |
Vertical oscillation (cm) | 7.93 (0.98) | 7.48 (0.90) | <0.001 (0.48) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaén-Carrillo, D.; Roche-Seruendo, L.E.; Molina-Molina, A.; Cardiel-Sánchez, S.; Cartón-Llorente, A.; García-Pinillos, F. Influence of the Shod Condition on Running Power Output: An Analysis in Recreationally Active Endurance Runners. Sensors 2022, 22, 4828. https://doi.org/10.3390/s22134828
Jaén-Carrillo D, Roche-Seruendo LE, Molina-Molina A, Cardiel-Sánchez S, Cartón-Llorente A, García-Pinillos F. Influence of the Shod Condition on Running Power Output: An Analysis in Recreationally Active Endurance Runners. Sensors. 2022; 22(13):4828. https://doi.org/10.3390/s22134828
Chicago/Turabian StyleJaén-Carrillo, Diego, Luis E. Roche-Seruendo, Alejandro Molina-Molina, Silvia Cardiel-Sánchez, Antonio Cartón-Llorente, and Felipe García-Pinillos. 2022. "Influence of the Shod Condition on Running Power Output: An Analysis in Recreationally Active Endurance Runners" Sensors 22, no. 13: 4828. https://doi.org/10.3390/s22134828
APA StyleJaén-Carrillo, D., Roche-Seruendo, L. E., Molina-Molina, A., Cardiel-Sánchez, S., Cartón-Llorente, A., & García-Pinillos, F. (2022). Influence of the Shod Condition on Running Power Output: An Analysis in Recreationally Active Endurance Runners. Sensors, 22(13), 4828. https://doi.org/10.3390/s22134828