Bridge Health Monitoring Using Strain Data and High-Fidelity Finite Element Analysis
Abstract
:1. Introduction
2. The Bridge and the Finite Element Modeling
3. Sensor Installation and Load Tests
4. Field Measurements
5. Numerical Predictions
6. Long-Term Monitoring
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rizzo, P.; Enshaeian, A. Challenges in Bridge Health Monitoring: A Review. Sensors 2021, 21, 4336. [Google Scholar] [CrossRef] [PubMed]
- Federal Highway Administration, (2019a). Available online: https://www.fhwa.dot.gov/bridge/nbi/ascii.cfm (accessed on 5 April 2022).
- Federal Highway Administration, (2019c). Available online: https://www.fhwa.dot.gov/bridge/fc.cfm (accessed on 5 April 2022).
- Zhang, Z.; Sun, C. Structural Damage Identification via Physics-Guided Machine Learning: A Methodology Integrating Pattern Recognition with Finite Element Model Updating. Struct. Health Monit. 2021, 20, 1675–1688. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective. In Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, P.; Lanza di Scalea, F. Wavelet-Based Unsupervised and Supervised Learning Algorithms for Ultrasonic Structural Monitoring of Waveguides. In Progress in Smart Materials and Structures Research; Reece, P.L., Ed.; NOVA Science Publishers: New York, NY, USA, 2007; pp. 227–290. [Google Scholar]
- Liu, Y.Y.; Ju, Y.F.; Duan, C.D.; Zhao, X.F. Structure Damage Diagnosis Using Neural Network and Feature Fusion. Eng. Appl. Artif. Intell. 2011, 24, 87–92. [Google Scholar] [CrossRef]
- Gu, J.; Gul, M.; Wu, X. Damage Detection under Varying Temperature Using Artificial Neural Networks. Struct. Control Health Monit. 2017, 24, e1998. [Google Scholar] [CrossRef]
- Xu, Y.; Li, S.; Zhang, D.; Jin, Y.; Zhang, F.; Li, N.; Li, H. Identification Framework for Cracks on a Steel Structure Surface by a Restricted Boltzmann Machines Algorithm Based on Consumer-Grade Camera Images. Struct. Control Health Monit. 2018, 25, e2075. [Google Scholar] [CrossRef]
- Azimi, M.; Pekcan, G. Structural Health Monitoring Using Extremely Compressed Data through Deep Learning. Comput. Civ. Infrastruct. Eng. 2020, 35, 597–614. [Google Scholar] [CrossRef]
- Ghahremani, B.; Bitaraf, M.; Ghorbani-Tanha, A.K.; Fallahi, R. Structural Damage Identification Based on Fast S-Transform and Convolutional Neural Networks. Structures 2021, 29, 1199–1209. [Google Scholar] [CrossRef]
- Bao, Y.; Tang, Z.; Li, H.; Zhang, Y. Computer Vision and Deep Learning-Based Data Anomaly Detection Method for Structural Health Monitoring. Struct. Health Monit. 2019, 18, 401–421. [Google Scholar] [CrossRef]
- Shang, Z.; Sun, L.; Xia, Y.; Zhang, W. Vibration-Based Damage Detection for Bridges by Deep Convolutional Denoising Autoencoder. Struct. Health Monit. 2021, 20, 1880–1903. [Google Scholar] [CrossRef]
- Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-Time Vibration-Based Structural Damage Detection Using One-Dimensional Convolutional Neural Networks. J. Sound Vib. 2017, 388, 154–170. [Google Scholar] [CrossRef]
- Alamdari, M.M.; Rakotoarivelo, T.; Khoa, N.L.D. A Spectral-Based Clustering for Structural Health Monitoring of the Sydney Harbour Bridge. Mech. Syst. Signal Process. 2017, 87, 384–400. [Google Scholar] [CrossRef]
- Fallahian, M.; Khoshnoudian, F.; Meruane, V. Ensemble Classification Method for Structural Damage Assessment under Varying Temperature. Struct. Health Monit. 2018, 17, 747–762. [Google Scholar] [CrossRef]
- Barthorpe, R.J.; Manson, G.; Worden, K. On Multi-Site Damage Identification Using Single-Site Training Data. J. Sound Vib. 2017, 409, 43–64. [Google Scholar] [CrossRef]
- Worden, K.; Manson, G. The Application of Machine Learning to Structural Health Monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 515–537. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, C. Multi-Site Structural Damage Identification Using a Multi-Label Classification Scheme of Machine Learning. Meas. J. Int. Meas. Confed. 2020, 154, 107473. [Google Scholar] [CrossRef]
- Wu, B.; Wu, G.; Yang, C.; He, Y. Damage Identification Method for Continuous Girder Bridges Based on Spatially-Distributed Long-Gauge Strain Sensing under Moving Loads. Mech. Syst. Signal Process. 2018, 104, 415–435. [Google Scholar] [CrossRef]
- Huang, H.-B.; Yi, T.-H.; Li, H.-N.; Liu, H. Strain-Based Performance Warning Method for Bridge Main Girders under Variable Operating Conditions. J. Bridg. Eng. 2020, 25, 04020013. [Google Scholar] [CrossRef]
- Xia, Q.; Cheng, Y.; Zhang, J.; Zhu, F. In-Service Condition Assessment of a Long-Span Suspension Bridge Using Temperature-Induced Strain Data. J. Bridg. Eng. 2017, 22, 04016124. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, Z.; Li, S.; Li, H. Strain Features and Condition Assessment of Orthotropic Steel Deck Cable-Supported Bridges Subjected to Vehicle Loads by Using Dense FBG Strain Sensors. Smart Mater. Struct. 2017, 26, 104007. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.-H.; Yi, T.-H.; Li, H.-N.; Zhang, Y.-F. Correlation-Based Estimation Method for Cable-Stayed Bridge Girder Deflection Variability under Thermal Action. J. Perform. Constr. Facil. 2018, 32, 04018070. [Google Scholar] [CrossRef]
- Yang, D.H.; Yi, T.H.; Li, H.N.; Liu, H.; Liu, T. Train-Induced Dynamic Behavior Analysis of Longitudinal Girder in Cable-Stayed Bridge. Smart Struct. Syst. 2018, 21, 549–559. [Google Scholar] [CrossRef]
- Yu, S.; Ou, J. Structural Health Monitoring and Model Updating of Aizhai Suspension Bridge. J. Aerosp. Eng. 2017, 30, B4016009. [Google Scholar] [CrossRef]
- Schlune, H.; PLoS, M.; Gylltoft, K. Improved Bridge Evaluation through Finite Element Model Updating Using Static and Dynamic Measurements. Eng. Struct. 2009, 31, 1477–1485. [Google Scholar] [CrossRef]
- Yang, H.; Xu, X.; Neumann, I. Laser Scanning-Based Updating of a Finite-Element Model for Structural Health Monitoring. IEEE Sens. J. 2016, 16, 2100–2104. [Google Scholar] [CrossRef]
- He, X.H.; Yu, Z.W.; Chen, Z.Q. Finite Element Model Updating of Existing Steel Bridge Based on Structural Health Monitoring. J. Cent. South Univ. Technol. 2008, 15, 399–403. [Google Scholar] [CrossRef]
- Giagopoulos, D.; Arailopoulos, A.; Dertimanis, V.; Papadimitriou, C.; Chatzi, E.; Grompanopoulos, K. Structural Health Monitoring and Fatigue Damage Estimation Using Vibration Measurements and Finite Element Model Updating. Struct. Health Monit. 2019, 18, 1189–1206. [Google Scholar] [CrossRef]
- Ghahremani, B.; Bitaraf, M.; Rahami, H. A Fast-Convergent Approach for Damage Assessment Using CMA-ES Optimization Algorithm and Modal Parameters. J. Civ. Struct. Health Monit. 2020, 10, 497–511. [Google Scholar] [CrossRef]
- Schommer, S.; Nguyen, V.H.; Maas, S.; Zürbes, A. Model Updating for Structural Health Monitoring Using Static and Dynamic Measurements. Procedia Eng. 2017, 199, 2146–2153. [Google Scholar] [CrossRef]
- Zanjani Zadeh, V.; Patnaik, A. Finite Element Modeling of the Dynamic Response of a Composite Reinforced Concrete Bridge for Structural Health Monitoring. Int. J. Adv. Struct. Eng. 2014, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Gatti, M. Structural Health Monitoring of an Operational Bridge: A Case Study. Eng. Struct. 2019, 195, 200–209. [Google Scholar] [CrossRef]
- Cheng, X.X.; Dong, J.; Han, X.L.; Fei, Q.G. Structural Health Monitoring-Oriented Finite-Element Model for a Large Transmission Tower. Int. J. Civ. Eng. 2018, 16, 79–92. [Google Scholar] [CrossRef]
- Weng, S.; Zhu, H.P. Damage Identification of Civil Structures Based on Finite Element Model Updating. Gongcheng Lixue/Eng. Mech. 2021, 38, 1–16. [Google Scholar] [CrossRef]
- Duan, Y.F.; Xu, Y.L.; Fei, Q.G.; Wong, K.Y.; Chan, K.W.Y.; Ni, Y.Q.; Ng, C.L. Advanced Finite Element Model of Tsing Ma Bridge for Structural Health Monitoring. Int. J. Struct. Stab. Dyn. 2011, 11, 313–344. [Google Scholar] [CrossRef]
- Eiras, J.N.; Payan, C.; Rakotonarivo, S.; Garnier, V. Experimental Modal Analysis and Finite Element Model Updating for Structural Health Monitoring of Reinforced Concrete Radioactive Waste Packages. Constr. Build. Mater. 2018, 180, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Haidarpour, A.; Tee, K.F. Finite Element Model Updating for Structural Health Monitoring. SDHM Struct. Durab. Health Monit. 2020, 14, 1–17. [Google Scholar] [CrossRef]
- Rizzo, P.; Sorrivi, E.; Lanza di Scalea, F.; Viola, E. Wavelet-Based Outlier Analysis for Guided Wave Structural Monitoring: Application to Multi-Wire Strands. J. Sound Vib. 2007, 307, 52–68. [Google Scholar] [CrossRef]
- Bagheri, A.; Pistone, E.; Rizzo, P. Outlier Analysis and Artificial Neural Network for the Noncontact Nondestructive Evaluation of Immersed Plates. Res. Nondestruct. Eval. 2015, 26, 154–173. [Google Scholar] [CrossRef]
- Zheng, B.; Rizzo, P.; Nasrollahi, A. Outlier Analysis of Nonlinear Solitary Waves for Health Monitoring Applications. Struct. Health Monit. 2020, 19, 1160–1174. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghahremani, B.; Enshaeian, A.; Rizzo, P. Bridge Health Monitoring Using Strain Data and High-Fidelity Finite Element Analysis. Sensors 2022, 22, 5172. https://doi.org/10.3390/s22145172
Ghahremani B, Enshaeian A, Rizzo P. Bridge Health Monitoring Using Strain Data and High-Fidelity Finite Element Analysis. Sensors. 2022; 22(14):5172. https://doi.org/10.3390/s22145172
Chicago/Turabian StyleGhahremani, Behzad, Alireza Enshaeian, and Piervincenzo Rizzo. 2022. "Bridge Health Monitoring Using Strain Data and High-Fidelity Finite Element Analysis" Sensors 22, no. 14: 5172. https://doi.org/10.3390/s22145172
APA StyleGhahremani, B., Enshaeian, A., & Rizzo, P. (2022). Bridge Health Monitoring Using Strain Data and High-Fidelity Finite Element Analysis. Sensors, 22(14), 5172. https://doi.org/10.3390/s22145172