Automatic Extraction of Muscle Parameters with Attention UNet in Ultrasonography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
- The longitudinal ultrasound scans of the Biceps Brachii (BB) muscle at two-thirds of the distance from the acromion to the elbow crease;
- The longitudinal ultrasound scans of the bulkiest part of the medial head of the Gastrocnemius (GCM) muscle;
- The longitudinal ultrasound scans of the Tibialis Anterior (TA) muscle at one-quarter of the distance from the inferior pole of the patella to the malleolus lateralis.
2.2. Muscle Thickness Calculation
2.2.1. Proposed Method
Algorithm 1. Post-Processing Algorithm | |
Require: Prediction array x | |
Input: | |
Output: | |
1: | Extract structures S = [s1, s2, …, sn] with CCA |
2: | |
3: | |
4: | |
5: | |
6: | If (xmax((i)) − xmin((i)) == width(x)) |
7: | //Aponeuroses has no empty spaces |
8: | |
9: | Else: |
10: | |
11: | If along x-axis of |
12: | |
13: | ) |
14: | |
15: | Else: |
16: | pass |
17: |
- Skeletonise the aponeuroses candidate;
- Skeletonise the structure;
- Connect these two structures using the polynomial fitting of rank two to fill in the missing pixels (and smoothen the boundaries of possible spikes).
2.2.2. Muscle Thickness Measurements
2.3. Pennation Angle and Fascicles Length Calculation
2.3.1. Muscle Fascicles Extraction
- (a)
- Firstly, the contrast-limited adaptive histogram equalisation method (CLAHE) [29] enhances the contrast between the fascicles and the other muscle structures.
- (b)
- Subsequently, to highlight linear structures, a filtering approach is applied [30] that is suitable for ridge-like elongated structures reminiscent of the fascicle’s appearance.
- (c)
- The well-established k-means algorithm [31] has been utilised in the next step to delineate the inner fascicles.
- (d)
- Later, the smallest structures (in terms of the area of pixels) are eliminated.
- (e)
- Subsequently, each structure is skeletonised, and the points of the skeleton are fitted to a linear segment. To accomplish continuity of fascicles, the segments that are part of the same line were identified and connected based on the criteria mentioned above.
- (f)
- Afterwards, a selection of the dominant orientation is performed via k-means clustering. In particular, the orientation with the highest total line segment length is chosen from the clusters.
- (g)
- Finally, the line segments are extended to fit the whole muscle. Anatomically, two fascicles cannot intersect within the muscle. If any two lines intersect inside the muscle, then the one whose orientation differs most from the median orientation of all the lines is deleted.
- Firstly, for the case of BB muscle, the initial image needs to be horizontally flipped to smoothly apply the procedure mentioned above;
- Secondly, in the case of TA, the two muscle compartments depicted in Figure 1 as (c1) and (c2) have to be isolated (c2 must also be flipped horizontally) to be able to detect the fascicles;
- Lastly, regarding the connection of the algorithm’s collinear segments (step e), at least two of the following criteria must be fulfilled:
- Their extensions intersect each other within the image;
- One of the two segments is in the upper left part with respect to the other;
- Their orientation between the two segments differs less than 5 degrees.
2.3.2. Pennation Angle & Fascicles Length Measurements
2.4. Evaluation Metrics
3. Results
3.1. Muscle Thickness Calculation
3.2. Penation Angle and Fasciles Length Calculation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barotsis, N.; Tsiganos, P.; Kokkalis, Z.; Panayiotakis, G.; Panagiotopoulos, E. Reliability of muscle thickness measurements in ultrasonography. Int. J. Rehabil. Res. 2020, 43, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Narici, M.V.; Flueck, M.; Koesters, A.; Gimpl, M.; Reifberger, A.; Seynnes, O.R.; Niebauer, J.; Rittweger, J.; Mueller, E. Skeletal Muscle Remodeling in Response to Alpine Skiing Training in Older Individuals. Scand. J. Med. Sci. Sports 2011, 21, 23–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Boer, M.D.; Seynnes, O.R.; di Prampero, P.E.; Pišot, R.; Mekjavić, I.B.; Biolo, G.; Narici, M.V. Effect of 5 Weeks Horizontal Bed Rest on Human Muscle Thickness and Architecture of Weight Bearing and Non-Weight Bearing Muscles. Eur. J. Appl. Physiol. 2008, 104, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.A.; Srinivas-Shankar, U.; Roberts, S.A.; Connolly, M.J.; Adams, J.E.; Oldham, J.A.; Wu, F.C.W.; Seynnes, O.R.; Stewart, C.E.H.; Maganaris, C.N.; et al. Effects of Testosterone on Skeletal Muscle Architecture in Intermediate-Frail and Frail Elderly Men. J. Gerontol. Ser. A 2010, 65A, 1215–1219. [Google Scholar] [CrossRef]
- Agyapong-Badu, S.; Warner, M.; Samuel, D.; Narici, M.; Cooper, C.; Stokes, M. Anterior Thigh Composition Measured Using Ultrasound Imaging to Quantify Relative Thickness of Muscle and Non-Contractile Tissue: A Potential Biomarker for Musculoskeletal Health. Physiol. Meas. 2014, 35, 2165–2176. [Google Scholar] [CrossRef]
- Pillen, S.; Arts, I.M.P.; Zwarts, M.J. Muscle Ultrasound in Neuromuscular Disorders. Muscle Nerve 2008, 37, 679–693. [Google Scholar] [CrossRef]
- Takai, Y.; Ohta, M.; Akagi, R.; Kato, E.; Wakahara, T.; Kawakami, Y.; Fukunaga, T.; Kanehisa, H. Validity of Ultrasound Muscle Thickness Measurements for Predicting Leg Skeletal Muscle Mass in Healthy Japanese Middle-Aged and Older Individuals. J. Physiol. Anthropol. 2013, 32, 12. [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Loenneke, J.P.; Thiebaud, R.S. Ultrasound Assessment of Hamstring Muscle Size Using Posterior Thigh Muscle Thickness. Clin. Physiol. Funct. Imaging 2016, 36, 206–210. [Google Scholar] [CrossRef]
- Akagi, R.; Takai, Y.; Kato, E.; Wakahara, T.; Ohta, M.; Kanehisa, H.; Fukunaga, T.; Kawakami, Y. Development of an Equation to Predict Muscle Volume of Elbow Flexors for Men and Women with a Wide Range of Age. Eur. J. Appl. Physiol. 2010, 108, 689–694. [Google Scholar] [CrossRef]
- Barotsis, N.; Galata, A.; Hadjiconstanti, A.; Panayiotakis, G. The ultrasonographic measurement of muscle thickness in sarcopenia. A prediction study. Eur. J. Phys. Rehabil. Med. 2020, 56, 427–437. [Google Scholar] [CrossRef]
- Lieber, R.L.; Fridén, J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 2000, 23, 1647–1666. [Google Scholar] [CrossRef]
- Kurihara, T.; Oda, T.; Chino, K.; Kanehisa, H.; Fukunaga, T.; Kawakami, Y. Use of Three-Dimensional Ultrasonography for the Analysis of the Fascicle Length of Human Gastrocnemius Muscle During Contractions. Int. J. Sport Health Sci. 2005, 3, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Kwah, L.K.; Pinto, R.Z.; Diong, J.; Herbert, R.D. Reliability and Validity of Ultrasound Measurements of Muscle Fascicle Length and Pennation in Humans: A Systematic Review. J. Appl. Physiol. 2013, 114, 761–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maganaris, C.N.; Baltzopoulos, V.; Sargeant, A.J. In Vivo Measurements of the Triceps Surae Complex Architecture in Man: Implications for Muscle Function. J. Physiol. 1998, 512, 603–614. [Google Scholar] [CrossRef]
- Zajac, F.E. Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control. Crit. Rev. Biomed. Eng. 1989, 17, 359–411. [Google Scholar] [PubMed]
- Salvi, M.; Caresio, C.; Meiburger, K.M.; De Santi, B.; Molinari, F.; Minetto, M.A. Transverse Muscle Ultrasound Analysis (TRAMA): Robust and Accurate Segmentation of Muscle Cross-Sectional Area. Ultrasound Med. Biol. 2019, 45, 672–683. [Google Scholar] [CrossRef]
- Marzola, F.; van Alfen, N.; Salvi, M.; Santi, B.D.; Doorduin, J.; Meiburger, K.M. Automatic Segmentation of Ultrasound Images of Gastrocnemius Medialis with Different Echogenicity Levels Using Convolutional Neural Networks. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 2113–2116. [Google Scholar]
- Caresio, C.; Salvi, M.; Molinari, F.; Meiburger, K.M.; Minetto, M.A. Fully Automated Muscle Ultrasound Analysis (MUSA): Robust and Accurate Muscle Thickness Measurement. Ultrasound Med. Biol. 2017, 43, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Cronin, N.J.; Finni, T.; Seynnes, O. Using Deep Learning to Generate Synthetic B-Mode Musculoskeletal Ultrasound Images. Comput. Methods Programs Biomed. 2020, 196, 105583. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Hamarneh, G.; Wakeling, J.M. Automated Tracking of Muscle Fascicle Orientation in B-Mode Ultrasound Images. J. Biomech. 2009, 42, 2068–2073. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Katakis, S.; Barotsis, N.; Kastaniotis, D.; Theoharatos, C.; Tsiganos, P.; Economou, G.; Panagiotopoulos, E.; Fotopoulos, S.; Panayiotakis, G. Muscle Type and Gender Recognition Utilising High-Level Textural Representation in Musculoskeletal Ultrasonography. Ultrasound Med. Biol. 2019, 45, 1562–1573. [Google Scholar] [CrossRef] [PubMed]
- Katakis, S.; Barotsis, N.; Kastaniotis, D.; Theoharatos, C.; Tsourounis, D.; Fotopoulos, S.; Panagiotopoulos, E. Muscle Type Classification on Ultrasound Imaging Using Deep Convolutional Neural Networks. In Proceedings of the 2018 IEEE 13th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), Aristi Village, Greece, 10–12 June 2018; pp. 1–5. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:150504597. [Google Scholar]
- Lin, M.; Bao, G.; Sang, X.; Wu, Y. Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images. Sensors 2022, 22, 3055. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Kim, Y.J.; Kim, K.G. Segmentation Performance Comparison Considering Regional Characteristics in Chest X-ray Using Deep Learning. Sensors 2022, 22, 3143. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimisation. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Jung, U.; Choi, H. Active echo signals and image optimization techniques via software filter correction of ultrasound system. Appl. Acoust. 2022, 188, 108519. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast Limited Adaptive Histogram Equalization. In Graphics Gems IV; Heckbert, P., Ed.; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Meijering, E.; Jacob, M.; Sarria, J.C.F.; Steiner, P.; Hirling, H. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. M Unser Cytom. Part A 2004, 58, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, S. “Least squares quantisation in PCM” Information Theory. IEEE Trans. 1982, 28, 129–137. [Google Scholar]
- Koch, G.G. Intraclass correlation coefficient. In Encyclopedia of Statistical Sciences; Kotz, S., Johnson, N.L., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 4, pp. 213–217. [Google Scholar]
- Altman, D.G.; Bland, J.M. Measurement in medicine: The analysis of method comparison studies. Statistician 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Minetto, M.A.; Caresio, C.; Menapace, T.; Hajdarevic, A.; Marchini, A.; Molinari, F.; Maffiuletti, N.A. Ultrasound-based detection of low muscle mass for diagnosis of sarcopenia in older adults. PM&R 2016, 8, 453–462. [Google Scholar]
- Abe, T.; Thiebaud, R.S.; Loenneke, J.P.; Loftin, M.; Fukunaga, T. Prevalence of site-specific thigh sarcopenia in Japanese men and women. Age (Dordr) 2014, 36, 417–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikołajowski, G.; Pałac, M.; Linek, P. Automated ultrasound measurements of lateral abdominal muscles under controlled breathing phases. Comput. Methods Programs Biomed. 2022, 221, 106936. [Google Scholar] [CrossRef] [PubMed]
Muscles | UNet | Attention UNet |
---|---|---|
BB | 0.86 | 0.77 | 0.88 | 0.79 |
GCM | 0.75 | 0.61 | 0.81 | 0.68 |
TA | 0.78 | 0.65 | 0.85 | 0.73 |
Total | 0.77 | 0.65 | 0.85 | 0.74 |
Muscle | Operator (mm) | Automatic Method (mm) | RMSE (mm) | ICC (2,1) |
---|---|---|---|---|
BB | 32.93 ± 4.72 | 32.66 ± 4.72 | 0.39 | 0.99 |
GCM | 17.70 ± 1.76 | 17.55 ± 1.85 | 0.47 | 0.97 |
TA | 29.95 ± 3.28 | 29.80 ± 3.22 | 0.34 | 0.99 |
Total | - | - | 0.40 | 0.99 |
Muscle | Pennation Angle (°) | Fascicles Length (mm) |
---|---|---|
BB | 2.09 | 87.9 |
GCM | 3.02 | 7.65 |
TA | 1.75 | 18.4 |
Total | 2.22 | 53.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katakis, S.; Barotsis, N.; Kakotaritis, A.; Economou, G.; Panagiotopoulos, E.; Panayiotakis, G. Automatic Extraction of Muscle Parameters with Attention UNet in Ultrasonography. Sensors 2022, 22, 5230. https://doi.org/10.3390/s22145230
Katakis S, Barotsis N, Kakotaritis A, Economou G, Panagiotopoulos E, Panayiotakis G. Automatic Extraction of Muscle Parameters with Attention UNet in Ultrasonography. Sensors. 2022; 22(14):5230. https://doi.org/10.3390/s22145230
Chicago/Turabian StyleKatakis, Sofoklis, Nikolaos Barotsis, Alexandros Kakotaritis, George Economou, Elias Panagiotopoulos, and George Panayiotakis. 2022. "Automatic Extraction of Muscle Parameters with Attention UNet in Ultrasonography" Sensors 22, no. 14: 5230. https://doi.org/10.3390/s22145230
APA StyleKatakis, S., Barotsis, N., Kakotaritis, A., Economou, G., Panagiotopoulos, E., & Panayiotakis, G. (2022). Automatic Extraction of Muscle Parameters with Attention UNet in Ultrasonography. Sensors, 22(14), 5230. https://doi.org/10.3390/s22145230