Experimental Study and FEM Simulations for Detection of Rebars in Concrete Slabs by Coplanar Capacitive Sensing Technique
Abstract
:1. Introduction
2. Materials and Methods
3. Finite Element Modelling (FEM) of an RC Structure
3.1. Simulation Setup
3.2. FEM Results
4. Physical Experiment
4.1. Experimental Setup
4.2. Experimental Result
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelhafeez, M.; Nassr, A.A.; Abdelraheem, M. Capacitance-based technique for detection of reinforcement bars in concrete structures. IEEE Sens. J. 2020, 21, 7713–7724. [Google Scholar] [CrossRef]
- Yin, X.; Hutchins, D.; Diamond, G.; Purnell, P. Non-destructive evaluation of concrete using a capacitive imaging technique: Preliminary modelling and experiments. Cem. Concr. Res. 2010, 40, 1734–1743. [Google Scholar] [CrossRef] [Green Version]
- Carabba, L.; Santandrea, M.; Carloni, C.; Manzi, S.; Bignozzi, M.C. Steel fiber reinforced geopolymer matrix (S-FRGM) composites applied to reinforced concrete structures for strengthening applications: A preliminary study. Compos. Part B Eng. 2017, 128, 83–90. [Google Scholar] [CrossRef]
- Hoła, J.; Schabowicz, K. State-of-the-art non-destructive methods for diagnostic testing of building structures—Anticipated development trends. Arch. Civ. Mech. Eng. 2010, 10, 5–18. [Google Scholar] [CrossRef]
- Purnell, P.; Gan, T.; Hutchins, D.; Berriman, J. Noncontact ultrasonic diagnostics in concrete: A preliminary investigation. Cem. Concr. Res. 2004, 34, 1185–1188. [Google Scholar] [CrossRef]
- Ervin, B.L.; Kuchma, D.A.; Bernhard, J.T.; Reis, H. Monitoring corrosion of rebar embedded in mortar using high-frequency guided ultrasonic waves. J. Eng. Mech. 2009, 135, 9–19. [Google Scholar] [CrossRef]
- Cheng, Y.; Diao, S.; Hanif, A.; Parthasarathy, P.; Li, Z. Development and application of a novel low-cost capacitive sensor for accurate rebar position detection. Constr. Build. Mater. 2020, 257, 119506. [Google Scholar] [CrossRef]
- Song, H.W.; Saraswathy, V. Corrosion monitoring of reinforced concrete structures-A. Int. J. Electrochem. Sci. 2007, 2, 1–28. [Google Scholar]
- Chen, D.H.; Wimsatt, A. Inspection and condition assessment using ground penetrating radar. J. Geotech. Geoenviron. Eng. 2010, 136, 207–214. [Google Scholar] [CrossRef]
- Atef, A.; Zayed, T.; Hawari, A.; Khader, M.; Moselhi, O. Multi-tier method using infrared photography and GPR to detect and locate water leaks. Autom. Constr. 2016, 61, 162–170. [Google Scholar] [CrossRef]
- Drobiec, Ł.; Jasiński, R.; Mazur, W. Accuracy of eddy-current and radar methods used in reinforcement detection. Materials 2019, 12, 1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polimeno, M.R.; Roselli, I.; Luprano, V.A.; Mongelli, M.; Tati, A.; De Canio, G. A non-destructive testing methodology for damage assessment of reinforced concrete buildings after seismic events. Eng. Struct. 2018, 163, 122–136. [Google Scholar] [CrossRef]
- Morozov, M.; Jackson, W.; Pierce, S. Capacitive imaging of impact damage in composite material. Compos. Part B Eng. 2017, 113, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Genest, M.; Krys, D.; Mandache, C. Capacitive sensing for the detection of tile misalignment in ceramic armor arrays. NDT E Int. 2020, 112, 102261. [Google Scholar] [CrossRef]
- Yin, X.; Hutchins, D. Non-destructive evaluation of composite materials using a capacitive imaging technique. Compos. Part B Eng. 2012, 43, 1282–1292. [Google Scholar] [CrossRef]
- Diamond, G.G.; Hutchins, D.A. A new capacitive imaging technique for NDT. In Proceedings of the European Conference on NDT, Berlin, Germany, 25–29 September 2006; pp. 1–8. [Google Scholar]
- Abdollahi-Mamoudan, F.; Savard, S.; Ibarra-Castanedo, C.; Filleter, T.; Maldague, X. Coplanar Capacitive Sensing as a New Electromagnetic Technique for Non-Destructive Evaluation. In Quantitative Nondestructive Evaluation; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 85529, p. V001T05A002. [Google Scholar] [CrossRef]
- Yin, X.; Fu, J.; Li, W.; Chen, G.; Hutchins, D.A. A capacitive-inductive dual modality imaging system for non-destructive evaluation applications. Mech. Syst. Signal Process. 2020, 135, 106403. [Google Scholar] [CrossRef]
- Dérobert, X.; Iaquinta, J.; Klysz, G.; Balayssac, J.P. Use of capacitive and GPR techniques for the non-destructive evaluation of cover concrete. Ndt E Int. 2008, 41, 44–52. [Google Scholar] [CrossRef]
- Yin, X.; Hutchins, D.A.; Chen, G.; Li, W. Detecting surface features on conducting specimens through an insulation layer using a capacitive imaging technique. NDT E Int. 2012, 52, 157–166. [Google Scholar] [CrossRef]
- Yin, X.; Chen, G.; Li, W.; Huthchins, D. Design and characterization of planar capacitive imaging probe based on the measurement sensitivity distribution. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2013; Volume 1511, pp. 1586–1592. [Google Scholar] [CrossRef]
- Abdollahi-Mamoudan, F.; Savard, S.; Ibarra-Castanedo, C.; Filleter, T.; Maldague, X. Influence of different design parameters on a coplanar capacitive sensor performance. NDT E Int. 2022, 126, 102588. [Google Scholar] [CrossRef]
- Abdollahi-Mamoudan, F.; Savard, S.; Ibarra-Castanedo, C.; Filleter, T.; Maldague, X. Multi-Electrode Coplanar Capacitive Probe with Various Arrangements for Non-Destructive Testing of Materials. IEEE Sens. J. 2022, 22, 8134–8146. [Google Scholar] [CrossRef]
- Li, X.B.; Larson, S.D.; Zyuzin, A.S.; Mamishev, A.V. Design principles for multichannel fringing electric field sensors. IEEE Sens. J. 2006, 6, 434–440. [Google Scholar] [CrossRef]
- Chen, H.; Li, S. Collinear Nonlinear Mixed-Frequency Ultrasound with FEM and Experimental Method for Structural Health Prognosis. Processes 2022, 10, 656. [Google Scholar] [CrossRef]
- Moskovchenko, A.; Švantner, M.; Vavilov, V.; Chulkov, A. Analyzing probability of detection as a function of defect size and depth in pulsed IR thermography. NDT E Int. 2022, 130, 102673. [Google Scholar] [CrossRef]
- Diamond, G.; Hutchins, D.; Gan, T.; Purnell, P.; Leong, K. Single-sided capacitive imaging for NDT. Insight-Non Test. Cond. Monit. 2006, 48, 724–730. [Google Scholar] [CrossRef]
Model Parameters | Setting |
---|---|
Width of the electrodes | 9 mm |
Length of the electrodes | 18 mm |
Separation distance between two adjacent electrodes | 4.5 mm |
Width of the shielding plate | 58 mm |
Length of the shielding plate | 36 mm |
Width of the specimen | 80 mm |
Length of the specimen | 65 mm |
Height of the specimen | 15 mm |
Width of the computational domain | 110 mm |
Length of the computational domain | 110 mm |
Height of the computational domain | 110 mm |
Material of the electrodes | Copper |
Material of the specimen | concrete |
Material of the computational domain | Air |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdollahi-Mamoudan, F.; Ibarra-Castanedo, C.; Filleter, T.; Maldague, X.P.V. Experimental Study and FEM Simulations for Detection of Rebars in Concrete Slabs by Coplanar Capacitive Sensing Technique. Sensors 2022, 22, 5400. https://doi.org/10.3390/s22145400
Abdollahi-Mamoudan F, Ibarra-Castanedo C, Filleter T, Maldague XPV. Experimental Study and FEM Simulations for Detection of Rebars in Concrete Slabs by Coplanar Capacitive Sensing Technique. Sensors. 2022; 22(14):5400. https://doi.org/10.3390/s22145400
Chicago/Turabian StyleAbdollahi-Mamoudan, Farima, Clemente Ibarra-Castanedo, Tobin Filleter, and Xavier P. V. Maldague. 2022. "Experimental Study and FEM Simulations for Detection of Rebars in Concrete Slabs by Coplanar Capacitive Sensing Technique" Sensors 22, no. 14: 5400. https://doi.org/10.3390/s22145400
APA StyleAbdollahi-Mamoudan, F., Ibarra-Castanedo, C., Filleter, T., & Maldague, X. P. V. (2022). Experimental Study and FEM Simulations for Detection of Rebars in Concrete Slabs by Coplanar Capacitive Sensing Technique. Sensors, 22(14), 5400. https://doi.org/10.3390/s22145400