A Rolling Bearing Fault Diagnosis Based on Conditional Depth Convolution Countermeasure Generation Networks under Small Samples
Abstract
:1. Introduction
2. Related Works
2.1. DCGAN
2.2. CGAN
3. C-DCGAN for Bearing Fault Diagnosis
- (1)
- Using custom residual blocks, the regularization effect of the generating network is optimized, the feature extraction ability of the network is enhanced, and the authenticity of the generated simulation fault data is improved.
- (2)
- In the generator and discriminator, spectral normalization is added to improve the stability of the network model training in this experiment, and to solve the gradient explosion problem.
- (3)
- The loss function is set as W distance with penalty term, which effectively solves the problem of gradient disappearance.
3.1. Conditional Deep Convolution Antagonism Generation Network Structure
3.2. Structural Improvement of the C-DCGAN Model
3.2.1. Spectral Normalization
3.2.2. Loss Function
3.3. Training Process of C-DCGAN
Algorithm 1: C-DCGAN training process |
Input: Noise fault data with constraints |
Output: Enhanced bearing fault sample data |
1. Initialization generator and discriminator. |
2. while i do: |
For step do: |
Sample mini batch of n noise samples from noise Pz(z) |
Sample mini batch of n examples from data generating distribution Pdata(x) |
Add constraints C to the generator |
Noise sample input generator to obtain generated data |
Update the discriminator by its stochastic gradient: |
End for |
3. Sample mini batch of n noise samples from noise Pz(z) |
4. Add constraints C to the discriminator |
5. Update the generator by its stochastic gradient: |
6. end while |
I is the maximum number of iterations in the training process. Step is the training times of the discriminator. |
3.4. One-Dimension Convolutional Neural Network
3.5. Fault Diagnosis Algorithm
4. Experiment and Result Analysis
4.1. Data Set
4.2. Experimental Results and Comparative Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, Y.G.; Yang, B.; Du, Z.J.; Lu, N. A deep migration diagnosis method for mechanical equipment faults under big data. Chin. J. Mech. Eng. 2019, 55, 1–8. [Google Scholar]
- Wang, Z.Y.; Yao, L.G. Generalized fine compound muti-scalesample entropy combined with manifold learning for rolling bearing fault diagnosis method. China Mech. Eng. 2020, 31, 2463–2471. [Google Scholar]
- Zhang, M.; Lu, J.; Ma, J. Fault Diagnosis of Rolling Bearing Based on Multi Scale Convolution Strategy CNN. J. Chongqing Univ. Technol. (Nat. Sci.) 2020, 34, 102–110. [Google Scholar]
- Gao, Y.; Yu, D. Intelligent fault diagnosis for rolling bearings based on graph shift regularization with directed graphs. Adv. Eng. Inform. 2021, 47, 101253. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Liu, J.; Qin, Y.; Peng, D. Multi-task Learning Based on Lightweight 1DCNN for Fault Diagnosis of Wheelset Bearings. IEEE Trans. Instrum. Meas. 2020, 70, 1–11. [Google Scholar] [CrossRef]
- Zhu, H.; Cheng, J.; Zhang, C.; Wu, J.; Shao, X. Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings. Appl. Soft Comput. 2020, 88, 106060. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, H.; Chen, H.; Yan, B.; Chu, X. Performance degradation assessment of rolling bearing based on convolutional neural network and deep long-short term memory network. Int. J. Prod. Res. Taylor Fr. J. 2020, 58, 3931–3943. [Google Scholar] [CrossRef]
- Zhiyi, H.; Haidong, S.; Xiang, Z.; Yu, Y.; Junsheng, C. An intelligent fault diagnosis method for rotor-bearing system using small labeled infrared thermal images and enhanced CNN transferred from CAE. Adv. Eng. Inform. 2020, 46, 101150. [Google Scholar] [CrossRef]
- Shao, X.; Kim, C.-S. Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing. Sensors 2022, 22, 4156. [Google Scholar] [CrossRef]
- Tang, H.; Gao, S.; Wang, L.; Li, X.; Li, B.; Pang, S. A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset. Sensors 2021, 21, 6754. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Wu, J.; Deng, C.; Jiang, W. Wide Residual Relation Network-Based Intelligent Fault Diagnosis of Rotating Machines with Small Samples. Sensors 2022, 22, 4161. [Google Scholar] [CrossRef]
- Yuan, C.; Qian, L.; Ting, Z.H. Generation of malicious domain training data based on generative adversarial network. Appl. Res. Comput. 2019, 36, 1540–1568. [Google Scholar] [CrossRef]
- Deng, W.; Yao, R.; Zhao, H.; Yang, X.; Li, G. A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput. 2019, 23, 2445–2462. [Google Scholar] [CrossRef]
- Ding, Y.; Ma, L.; Ma, J.; Wang, C.; Lu, C. A Generative Adversarial Network-Based Intelligent Fault Diagnosis Method for Rotating Machinery under Small Sample Size Conditions. IEEE Access 2019, 7, 149736–149749. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; Li, F.; Zhang, K.; Lv, H.; He, S.; Xu, E. Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions. ISA Trans. 2022, 119, 152–171. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Li, J.; Tian, J.; Wang, X. The key theorem of learning theory on g/sub /spl lambda//measure spaces. Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), Shanghai, China, 26–29 August 2004; Volume 3, pp. 1904–1907. [Google Scholar] [CrossRef]
- Antoniou, A.; Storkey, A.; Edwards, H. Data Augmentation Generative Adversarial Networks. arXiv 2017, arXiv:1711.04340. [Google Scholar] [CrossRef]
- Yin, H.; Li, Z.; Zuo, J.; Liu, H.; Yang, K.; Li, F. Wasserstein Generative Adversarial Network and Convolutional Neural Network (WG-CNN) for Bearing Fault Diagnosis. Math. Probl. Eng. 2020, 1–16. [Google Scholar] [CrossRef]
- Lan, G.; Shen, H.F.; Wang, Y. Dataset enhancement method based on improved deep convolutional generative adversarial networks. J. Comput. Appl. 2021, 1–11. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Bangkok, Thailand, 23–27 November 2020; MIT Press: Cambridge, MA, USA, 2020; pp. 2672–2680. [Google Scholar]
- Liu, Q.; Ma, G.; Cheng, C. Data Fusion Generative Adversarial Network for Multi-Class Imbalanced Fault Diagnosis of Rotating Machinery. IEEE Access 2020, 8, 70111–70124. [Google Scholar] [CrossRef]
- Meng, Z.; Guo, X.; Pan, Z.; Sun, D.; Liu, S. Data Segmentation and Augmentation Methods Based on Raw Data Using Deep Neural Networks Approach for Rotating Machinery Fault Diagnosis. IEEE Access 2019, 7, 79510–79522. [Google Scholar] [CrossRef]
- Xue, Z.Z.; Man, J.F.; Peng, C.; Deng, H. Research on Bearing Fault Diagnosis Based on WGAN and GAPCNN under unbalanced data. Appl. Res. Comput. 2020, 37, 3681–3685. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Gao, X.; Deng, F.; Yue, X. Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty. Neurocomputing 2020, 396, 487–494. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. Comput. Sci. 2014, 2672–2680. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Zhi, M.; Wei, L.; Yang, X.; Zhang, J.; Li, Y.; Wang, P.; Huang, J.; Yang, G. FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution. Comput. Med. Imaging Graph. 2021, 92, 101969. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.W.; Zhou, L.Y.; Wang, G.D. Instability analysis for generative adversarial networks and its solving techniques. Sci. Sin. 2021, 51, 602–617. [Google Scholar] [CrossRef]
- Ming, Z.; Li, T.; Zhu, R.; Tang, Y.; Tang, M.; Lin, L.; Ma, Z. Conditional Wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification. Inf. Sci. 2020, 512, 1009–1023. [Google Scholar] [CrossRef]
- Jalayer, M.; Orsenigo, C.; Vercellis, C. Fault detection and diagnosis for rotating machinery: A model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms. Comput. Ind. 2021, 125, 103378. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Miao, Z.; Xu, Y. Convolutional encoding image retrieval method based on t-SNE. Appl. Res. Comput. 2017, 34, 1244–1248, 1264. (In Chinese) [Google Scholar]
Network Layer | Convolution Nucleus | Step Length | Activation Function | Learning Rate | SN |
---|---|---|---|---|---|
Input | 4*4 | 0 | Relu | N | |
Deconv1 | 5*5 | 2 | Relu | 0.001 | Y |
Deconv2 | 5*5 | 2 | Relu | 0.001 | Y |
Deconv3 | 5*5 | 2 | Relu | 0.001 | Y |
Deconv4 | 5*5 | 2 | Relu | 0.001 | Y |
Deconv5 | 5*5 | 2 | Relu | 0.001 | Y |
Output | 5*5 | 2 | Tanh | N |
Network Layer | Convolution Nucleus | Step Length | Activation Function | Learning Rate | SN |
---|---|---|---|---|---|
Input | 5*5 | 2 | Leaky Relu | N | |
Conv1 | 5*5 | 2 | Leaky Relu | 0.001 | Y |
Conv2 | 5*5 | 2 | Leaky Relu | 0.001 | Y |
Conv3 | 5*5 | 2 | Leaky Relu | 0.001 | Y |
Conv4 | 5*5 | 2 | Leaky Relu | 0.001 | Y |
Conv5 | 5*5 | 2 | Leaky Relu | 0.001 | Y |
Output | 4*4 | 0 | Leaky Relu | N |
Network Layer | Kernel Count | Kernel Size | Stride | Padding |
---|---|---|---|---|
Conv1 | 32 | 1*9 | 1 | 1 |
BN | ||||
Maxpool | 32 | 1*5 | 2 | 0 |
Conv2 | 64 | 1*5 | 1 | 1 |
BN | ||||
Maxpool | 64 | 1*5 | 2 | 0 |
Conv3 | 128 | 1*5 | 1 | 1 |
BN | ||||
Maxpool | 128 | 1*5 | 2 | 0 |
Conv4 | 256 | 1*5 | 1 | 1 |
BN | ||||
Maxpool | 256 | 1*5 | 2 | 0 |
Flatten | ||||
FC1 | ||||
FC2 | ||||
Softmax |
Fault Location | Inner | Outer | Ball | Normal | ||||||
---|---|---|---|---|---|---|---|---|---|---|
category | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
diameter | 0.18 | 0.36 | 0.54 | 0.18 | 0.36 | 0.54 | 0.18 | 0.36 | 0.54 | 0.00 |
Data set A | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 |
Data set B | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 |
Data set C | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 |
Experience | Accuracy (%) | Standard Deviation |
C-DCGAN+SVM | 92.51 | ±0.75 |
C-DCGAN+LSTM | 97.28 | ±0.33 |
C-DCGAN+1-D-CNN | 99.01 | ±0.19 |
infoGAN+1-D-CNN | 98.17 | ±0.41 |
CGAN+1-D-CNN | 97.82 | ±0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Zhang, S.; Li, C. A Rolling Bearing Fault Diagnosis Based on Conditional Depth Convolution Countermeasure Generation Networks under Small Samples. Sensors 2022, 22, 5658. https://doi.org/10.3390/s22155658
Peng C, Zhang S, Li C. A Rolling Bearing Fault Diagnosis Based on Conditional Depth Convolution Countermeasure Generation Networks under Small Samples. Sensors. 2022; 22(15):5658. https://doi.org/10.3390/s22155658
Chicago/Turabian StylePeng, Cheng, Shuting Zhang, and Changyun Li. 2022. "A Rolling Bearing Fault Diagnosis Based on Conditional Depth Convolution Countermeasure Generation Networks under Small Samples" Sensors 22, no. 15: 5658. https://doi.org/10.3390/s22155658
APA StylePeng, C., Zhang, S., & Li, C. (2022). A Rolling Bearing Fault Diagnosis Based on Conditional Depth Convolution Countermeasure Generation Networks under Small Samples. Sensors, 22(15), 5658. https://doi.org/10.3390/s22155658