Application of Internet of Things and Sensors in Healthcare
Abstract
:1. Introduction
1.1. Overview
1.2. Background
1.3. Contribution and Scope
1.4. Organization of the Paper
2. Literature Work
3. IoT Overview
3.1. Elements of the Internet of Things
3.1.1. Identification
3.1.2. Sensing
3.1.3. Communication
3.1.4. Computation
3.1.5. Services
3.1.6. Semantic
4. Applications and Gadgets for the IoT Healthcare System
4.1. IoT Based Ambulances
4.2. Telemart
4.3. Nexleaf Analytics
4.4. Barcode and Label System
4.5. Quio
4.6. Home Healthcare
4.7. Smart Watches
4.8. Advanced Metering Infrastructure (AMI)
4.9. Glucose Monitoring
4.10. Smart Wheelchair
5. Smart Technologies of IoT Based Healthcare Systems for COVID-19
5.1. Ambient Intelligence Communications Technologies
5.2. Augmented Reality (AR)
5.3. Wearable Devices
5.4. Smart Robots
5.5. Smart Technology
5.6. Ambient Assisted Living (AAL)
5.7. Serious Gaming
5.8. Communication Technologies Related to Healthcare
5.9. Mobile Communication
6. IoT Based Healthcare Challenges/Limitations for COVID-19 and Future Pandemics
6.1. Smartphone
6.2. Quality of Service (QoS)
6.3. Mobility
6.4. Standard Operating Procedures (SOPS) for Devices
6.5. Performance Evaluation
6.6. Interoperability
6.7. E-Management
6.8. Policy and Guidelines
6.9. Implementation
6.10. Integration
6.11. Privacy and Security
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, Z.; Yoon, W. A survey on energy conserving mechanisms for the internet of things: Wireless networking aspects. Sensors 2015, 15, 24818–24847. [Google Scholar] [CrossRef] [Green Version]
- Dohr, A.; Modre, O.R.; Drobics, M.; Hayn, D.; Schreier, G. The internet of things for ambient assisted living. In Proceedings of the IEEE Seventh International Conference on Information Technology: New Generations, Las Vagas, NV, USA, 12–14 April 2010; pp. 804–809. [Google Scholar]
- Corno, F.; Russis, L.; Roffarello, A.M. A healthcare support system for assisted living facilities: An IoT solution. In Proceedings of the IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Atlanta, GA, USA, 10–14 June 2016; pp. 344–352. [Google Scholar]
- Ali, N.A.; Abu-Elkheir, M. Internet of nano-things healthcare applications: Requirements, opportunities, and challenges. In Proceedings of the IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Abu Dhabi, United Arab Emirates, 19–21 October 2015; pp. 9–14. [Google Scholar]
- Ma, Y.; Wang, Y.; Yang, J.; Miao, Y.; Li, W. Big health application system based on health internet of things and big data. IEEE Access 2016, 5, 7885–7897. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Gia, T.N.; Negash, B.; Anzanpour, A.; Azimi, I.; Jiang, M.; Liljeberg, P. Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Gener. Comput. Syst. 2018, 78, 641–658. [Google Scholar] [CrossRef]
- Wu, T.; Redoute, J.M.; Yuce, M.R. An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access 2017, 5, 11413–11422. [Google Scholar] [CrossRef]
- Chen, X.; Ma, M.; Liu, A. Dynamic power management and adaptive packet size selection for IoT in e-Healthcare. Comput. Electr. Eng. 2018, 65, 57–375. [Google Scholar] [CrossRef]
- Subramaniyaswamy, V.; Manogaran, G.; Logesh, R.; Vijayakumar, V.; Chilamkurti, N.; Malathi, D.; Senthilselvan, N. An ontology-driven personalized food recommendation in IoT-based healthcare system. J. Supercomput. 2019, 75, 3184–3216. [Google Scholar] [CrossRef]
- Verma, P.; Sood, S.K.; Kalra, S. Cloud-centric IoT based student healthcare monitoring framework. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 1293–1309. [Google Scholar] [CrossRef]
- Inn, T.L. Smart City Technologies Take on COVID-19; Penang Institute: Penang, Malaysia, 2020; pp. 1–10. [Google Scholar]
- Hanna, T.P.; Evans, G.A.; Booth, C.M. Cancer, COVID-19 and the precautionary principle: Prioritizing treatment during a global pandemic. Nat. Rev. Clin. Oncol. 2020, 17, 268–270. [Google Scholar] [CrossRef]
- Roy, D.; Tripathy, S.; Kar, S.K.; Sharma, N.; Verma, S.K.; Kaushal, V. Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic. Asian J. Psychiatry 2020, 51, 102083–102088. [Google Scholar]
- Wong, T.Y.; Francesco, B. Academic ophthalmology during and after the COVID-19 pandemic. Ophthalmology 2020, 127, 51–52. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, M.; Li, Q.; Zhang, X.P.; Zhai, G.; Yao, N. Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner. arXiv 2020, arXiv:2002.05534. [Google Scholar]
- Haleem, A.; Javaid, M.; Vaishya, R.; Deshmukh, S.G. Areas of academic research with the impact of COVID-19. Am. J. Emerg. Med. 2020, 37, 1524–1526. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Javed, F.; Khan, S.; Khan, A.; Javed, A.; Tariq, R.; Matiullah; Khan, F. On precise path planning algorithm in wireless sensor network. Int. J. Distrib. Sens. Netw. 2018, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rashid, A.; Khan, F.; Gul, T.; Khan, S.; Khalil, F. Improving energy conservation in wireless sensor networks using energy harvesting system. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Khan, S.U.; Zaheer, R.; Khan, S. Future Internet: The Internet of Things architecture, possible applications and key challenges. In Proceedings of the 10th International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 17–19 December 2012; pp. 257–260. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- López, P.; Fernández, D.; Jara, A.J.; Skarmeta, A.F. Survey of Internet of Things technologies for clinical environments. In Proceedings of the 2013 27th International Conference on Advanced Information Networking and Applications Workshops, Barcelona, Spain, 25–28 March 2013; pp. 1349–1354. [Google Scholar]
- Yang, D.L.; Liu, F.; Liang, Y.D. A survey of the internet of things. In Proceedings of the 1st International Conference on E-Business Intelligence (ICEBI 2010), Guangzhou, China, 19–21 December 2010; pp. 524–532. [Google Scholar]
- Gluhak, A.; Krco, S.; Nati, M.; Pfisterer, D.; Mitton, N.; Razafindralambo, T. A survey on facilities for experimental Internet of Things research. IEEE Commun. Mag. 2011, 49, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Ullah, R.; Khan, A.; Khalid, H.; Zhang, A.Q.; Tian, Q.; Khan, F.; Xin, X. Optical multi-wavelength source for single feeder fiber using suppressed carrier in high capacity LR-WDM-PON. IEEE Access 2018, 6, 70674–70684. [Google Scholar] [CrossRef]
- La, H.J.; Jung, H.T.; Kim, S.D. Extensible disease diagnosis cloud platform with medical sensors and IoT Devices. In Proceedings of the 3rd International Conference on Future Internet of Things and Cloud, Rome, Italy, 24–26 August 2015; pp. 371–378. [Google Scholar]
- Chavan, P.; More, P.; Thorat, N.; Yewale, S.; Dhade, P. ECG-Remote patient monitoring using cloud computing. Imp. J. Interdiscip. Res. 2016, 2, 368–372. [Google Scholar]
- Arbat, H.; Choudhary, S.; Bala, K. IOT smart health band. Imp. J. Interdiscip. Res. 2016, 2, 300–311. [Google Scholar]
- Puri, C.; Ukil, A.; Bandyopadhyay, S.; Singh, R.; Pal, A.; Mandana, K. iCarMa: Inexpensive Cardiac Arrhythmia Management—An IoT Healthcare Analytics Solution. In Proceedings of the First Workshop on IoT-Enabled Healthcare and Wellness Technologies and Systems, Singapore, 30 June 2016; pp. 3–8. [Google Scholar]
- Alasmari, S.; Anwar, M. Security & privacy challenges in IoT-based health cloud. In Proceedings of the International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 15–17 December 2016; pp. 198–201. [Google Scholar]
- Muhammad, G.; Rahman, S.M.M.; Alelaiwi, A.; Alamri, A. Smart health solution integrating IoT and cloud: A case study of voice pathology monitoring. IEEE Commun. Mag. 2017, 55, 69–73. [Google Scholar] [CrossRef]
- Islam, S.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.S. The internet of things for health care: A comprehensive survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Darshan, K.R.; Anandakumar, K.R. A comprehensive review on usage of Internet of Things (IoT) in healthcare system. In Proceedings of the International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), Mandya, India, 17–19 December 2015; pp. 132–136. [Google Scholar]
- Huiyeh, K. A secure IoT-based healthcare system with body sensor networks. IEEE Access 2016, 4, 10288–10299. [Google Scholar]
- Tan, L.; Wang, N. Future internet: The internet of things. In Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010; pp. 376–380. [Google Scholar]
- Chaqfeh, M.A.; Mohamed, N. Challenges in middleware solutions for the internet of things. In Proceedings of the International Conference on Collaboration Technologies and Systems (CTS), Denver, CO, USA, 21–25 May 2012; pp. 21–26. [Google Scholar]
- Pilkington, K. Revolv Teams up with Home Depot to Keep your House Connected; CNET News; Centre National d’Etudes des Telecommunications (CNET): San Francisco, CA, USA, 2014. [Google Scholar]
- Sehrawat, D.; Gill, N.S. Smart sensors: Analysis of different types of IoT sensors. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 523–528. [Google Scholar]
- Shuwandy, M.L.; Zaidan, B.B.; Zaidan, A.A.; Albahri, A.S. Sensor-based mHealth authentication for real-time remote healthcare monitoring system: A multilayer systematic review. J. Med. Syst. 2019, 43, 33. [Google Scholar] [CrossRef] [PubMed]
- SmartThings. Home Automation, Home Security, and Peace of Mind; SmartThings: Palo Alto, CA, USA, 2014. [Google Scholar]
- Rushden, U. Belkin Brings Your Home to Your Fingertips with WeMo Home Automation System; Press Room Belkin: Los Angeles, CA, USA, 2012. [Google Scholar]
- Want, R. Near field communication. IEEE Pervasive Comput. 2011, 10, 4–7. [Google Scholar] [CrossRef]
- Ferro, E.; Potorti, F. Bluetooth and Wi-Fi wireless protocols: A survey and a comparison. IEEE Wirel. Commun. 2005, 12, 12–26. [Google Scholar] [CrossRef]
- Want, R. An introduction to RFID technology. IEEE Pervasive Comput. 2006, 5, 25–33. [Google Scholar] [CrossRef]
- McDermott-Wells, P. What is Bluetooth? IEEE Potentials 2005, 23, 33–35. [Google Scholar] [CrossRef]
- P802.15.4m/D4; IEEE Draft Standard for Local and Metropolitan Area Networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)—Amendment 6: TV White Space between 54 MHz and 862 MHz Physical Layer. IEEE: New York, NY, USA, 2013; 162p.
- Crosby, G.V.; Vafa, F. Wireless sensor networks and LTE-A network convergence. In Proceedings of the 38th Annual IEEE Conference on Local Computer Networks, Sydney, Australia, 21–24 October 2013; pp. 731–734. [Google Scholar]
- Ghosh, A.; Ratasuk, R.; Mondal, B.; Mangalvedhe, N.; Thomas, T. LTE-advanced: Next-generation wireless broadband technology. IEEE Wirel. Commun. 2010, 17, 10–22. [Google Scholar] [CrossRef]
- Xing, X.; Wang, J.; Li, M. Services and key technologies of the Internet of Things. ZTE Commun. 2020, 8, 26–29. [Google Scholar]
- Gigli, M.; Koo, S. Internet of Things: Services and applications categorization. Adv. Internet Things 2011, 1, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Saeed, N.; Bader, A.; Al-Naffouri, T.Y.; Alouini, M.S. When wireless communication responds to COVID-19: Combating the pandemic and saving the economy. Front. Commun. Netw. 2020, 1, 566853–566867. [Google Scholar] [CrossRef]
- WAS. Making Vehicles Special. Available online: https://www.was-vehicles.com/en/home.html/ (accessed on 22 June 2022).
- RedNinja. Life First Emergency Traffic Control. Available online: http://www.redninja.co.uk/8mins2savelives/ (accessed on 22 June 2022).
- Whelan, K. Smart Ambulances: The Future of Emergency Healthcare. November 2018. Available online: http://emag.medicalexpo.com/smart-ambulances-the-future-of-emergency-healthcare/ (accessed on 22 June 2022).
- Kamal, M.; Aljohani, A.; Alanazi, E. IoT meets COVID-19: Status, challenges, and opportunities. arXiv 2020, arXiv:2007.12268. [Google Scholar]
- Lee, H.T.; Cha, M.K. The effect of network structure on the purchase of virtual goods on social networking services. Internet Res. 2021, 32, 1288–1309. [Google Scholar] [CrossRef]
- Mike, T. How IoT Helps Improve Healthcare. Available online: https://builtin.com/internet-things/iot-in-healthcare (accessed on 22 June 2022).
- Jelacic, S.; Bqwdle, A.; Nair, B.G.; Kusulos, D.; Bower, L.; Togashi, K. A system for anesthesia drug administration using barcode technology: The Codonics Safe Label System and Smart Anesthesia ManagerTM. Anesth. Analg. 2015, 121, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.quio.com/ (accessed on 22 June 2022).
- Thornton, J. The “virtual wards” supporting patients with COVID-19 in the community. Br. Med. J. 2020, 369, m2119. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.abc.net.au/news/2021-03-06/sydney-hospital-st-vincents-builds-aboriginal-treatment/13171624 (accessed on 22 June 2022).
- Available online: https://econsultancy.com/internet-of-things-healthcare/ (accessed on 22 June 2022).
- Available online: https://www.superwatches.com/health-tracking-smartwatches/ (accessed on 22 June 2022).
- Reeder, B.; David, A. Health at hand: A systematic review of smart watch uses for health and wellness. J. Biomed. Inform. 2016, 63, 269–276. [Google Scholar] [CrossRef]
- Morello, R.; De Capua, C.; Fulco, G.; Mukhopadhyay, S.C. A smart power meter to monitor energy flow in smart grids: The role of advanced sensing and IoT in the electric grid of the future. IEEE Sens. J. 2017, 17, 7828–7837. [Google Scholar] [CrossRef]
- Alarcón, P.A.; Francisco, G.V.; Guzmán, G.I.P.; Cantillo, N.J.; Cuevas, V.R.E.; Alonso, S.G.A. An IoT-Based Non-Invasive Glucose Level Monitoring System Using Raspberry Pi. Appl. Sci. 2019, 9, 3046. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Ge, Y.; Li, W.; Rao, W.; Shen, W. A home mobile healthcare system for wheelchair users. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Hsinchu, Taiwan, 21–23 May 2014; pp. 609–614. [Google Scholar]
- Dr. Hawking’s Connected Wheelchair Project. Available online: https://www.smartcitiescouncil.com/resources/stephen-hawking-and-intel-connected-wheelchair-project (accessed on 8 December 2014).
- Martinez, M.N.; Luo, Z.; Kaushal, A.; Adeli, E.; Haque, A.; Kelly, S.S. Ethical issues in using ambient intelligence in health-care setting. Lancet Digit. Health 2020, 3, 115–123. [Google Scholar] [CrossRef]
- Gerup, J.; Soerensen, C.B.; Dieckmann, P. Augmented reality and mixed reality for healthcare education beyond surgery: An integrative review. Int. J. Med. Educ. 2020, 11, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Cui, J.; Ma, K.; Chen, H.; Zhang, J. A wristband device for detecting human pulse and motion based on the Internet of Things. Measurement 2020, 163, 108036. [Google Scholar] [CrossRef]
- Available online: https://www.undp.org/africa/news/undp-and-government-rwanda-deploy-smart-anti-epidemic-robots-fight-against-covid-19 (accessed on 22 June 2022).
- Singh, K. Role and impact of wearables in IoT healthcare. In Proceedings of the Third International Conference on Computational Intelligence and Informatics, Hyderabad, India, 28–29 December 2018; pp. 735–742. [Google Scholar]
- Murphy, R.R.; Gandudi, V.B.M.; Justin, A. Applications of robots for COVID-19 response. arXiv 2020, arXiv:2008.06976. [Google Scholar]
- Domo. Domo’s Get Back to Work Command Center. Available online: https://www.globenewswire.com/en/news-release/2020/04/21/2019526/21453/en/Domo-Launches-the-COVID-19-Crisis-Command-Center-for-the-State-of-Iowa.html (accessed on 22 June 2022).
- Maskeliunas, R. A review of Internet of things technologies for ambient assisted living environments. Future Internet 2019, 11, 259. [Google Scholar] [CrossRef] [Green Version]
- Majumder, S.; Aghayi, E.; Noferesti, M.; Memarzadeh, T.H.; Mondal, T.; Pang, Z.; Deen, M.J. Smart homes for elderly healthcare—Recent advances and research challenges. Sensors 2017, 17, 2496. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Härenstam, K.P.; Meijer, S.; Darwich, A.S. Serious Gaming of Logistics Management in Pediatric Emergency Medicine. Int. J. Serious Games 2020, 7, 47–77. [Google Scholar] [CrossRef] [Green Version]
- Fabricatore, C.; Dimitar, G.; Ximena, L. Rethinking Serious Games Design in the Age of COVID-19: Setting the Focus on Wicked Problems. In Joint International Conference on Serious Games; Springer: Cham, Switzerland, 2020; pp. 243–259. [Google Scholar]
- Shanmugasundaram, G.; Sankarikaarguzhali, G. An investigation on IoT healthcare analytics. Int. J. Inf. Eng. Electron. Bus. 2017, 9, 11–19. [Google Scholar]
- Tayyaba, S.; Khan, A.; Akhunzada, N.U.; Amin, M.A.; Shah, M.A.; Khan, F.; Ali, I. NPRA: Novel policy framework for resource allocation in 5G software defined networks. EAI Endorsed Trans. Mob. Commun. Appl. 2018, 4, e6. [Google Scholar]
- Hui, S.Y.; Yeung, K.H. Challenges in the migration to 4G mobile systems. IEEE Commun. Mag. 2003, 41, 54–59. [Google Scholar] [CrossRef]
- Li, X.; Gani, A.; Salleh, R.; Zakaria, O. The future of mobile wireless communication networks in Communication software and networks. In Proceedings of the International Conference on Communication Software and Networks, Chengdu, China, 27–28 February 2009; pp. 554–557. [Google Scholar]
- Khan, F.; Khan, A.W.; Shah, K.; Qasim, I.; Habib, A. An Algorithmic Approach for Core Election in Mobile Ad-hoc Network. J. Internet Technol. 2019, 20, 1099–1111. [Google Scholar]
- Khan, F.; Khan, A.W.; Khan, S.; Shah, K.; Qasim, I.; Habib, A. A Secure Core-Assisted Multicast Routing Protocol in Mobile Ad-Hoc Network. J. Internet Technol. 2020, 21, 375–383. [Google Scholar]
- Malik, A.; Khan, M.Z.; Faisal, M.; Khan, F.; Seo, J.T. An Efficient Dynamic Solution for the Detection and Prevention of Black Hole Attack in VANETs. Sensors 2022, 22, 1897. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Zahid, M.; Gürüler, H.; Tarimer, I.; Whangbo, T. An Efficient and Reliable Multicasting for Smart Cities. Comput. Mater. Contin. 2022, 72, 663–678. [Google Scholar] [CrossRef]
- Bradford, L.; Aboy, M.; Liddell, K. COVID-19 contact tracing apps: A stress test for privacy, the GDPR, and data protection regimes. J. Law Biosci. 2020, 7, lsaa034. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Ghovanloo, M.; Guler, U.; Ozkaya, A.T.; Sarioglu, A.F.; Unluturk, B.D. PANACEA: An internet of bio-nanothings application for early detection and mitigation of infectious diseases. IEEE Access 2020, 8, 140512–140523. [Google Scholar] [CrossRef]
- Shams, A.B.; Hoque, A.E.; Rahman, A.; Sarker, R.M.M.; Siddika, N.; Preo, R.B.; Hussein, M.R.; Mostari, S.; Kabir, R. Web search engine misinformation notifier extension (SEMiNExt): A machine learning based approach during COVID-19 Pandemic. Healthcare 2021, 9, 156. [Google Scholar] [CrossRef] [PubMed]
Target Industry | Functionalities | Challenges |
City | Traffic situation, pollution monitoring, parking, detection of virus and crime | QoS, mobility, SoP, performance evaluation, interpretability, E-management, policy and guidelines, implementation, integration, privacy and security |
Building | Energy efficiency and maintenance, fire alarm, monitoring, etc. | SoP, performance evaluation, interpretability, policy and guidelines, implementation, integration, privacy and security |
Home | TV, AC, lightning, doors, alarm, security cameras, etc. | Policy and guidelines, privacy and security |
Grid | Power distribution and generation | Smartphone, QoS, mobility, performance evaluation, interpretability, integration |
Industry | Robots, PLCs, conveyer built, etc. | Smartphone, QoS, mobility, performance evaluation, interpretability, integration |
Agriculture | Robots, tractor, drones, etc. | Smartphone, QoS, mobility, performance evaluation, interpretability, E-management, policy and guidelines, implementation, integration, privacy and security |
Education | Switches, routers, hubs, etc. | Mobility, SoP, E-management, policy and guidelines, privacy and security |
Healthcare systems | Body sensors, patient monitoring drugs, tags, etc. | QoS, mobility, performance evaluation, interpretability, E-management, policy and guidelines, implementation, integration, privacy and security |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-kahtani, M.S.; Khan, F.; Taekeun, W. Application of Internet of Things and Sensors in Healthcare. Sensors 2022, 22, 5738. https://doi.org/10.3390/s22155738
Al-kahtani MS, Khan F, Taekeun W. Application of Internet of Things and Sensors in Healthcare. Sensors. 2022; 22(15):5738. https://doi.org/10.3390/s22155738
Chicago/Turabian StyleAl-kahtani, Mohammad S., Faheem Khan, and Whangbo Taekeun. 2022. "Application of Internet of Things and Sensors in Healthcare" Sensors 22, no. 15: 5738. https://doi.org/10.3390/s22155738
APA StyleAl-kahtani, M. S., Khan, F., & Taekeun, W. (2022). Application of Internet of Things and Sensors in Healthcare. Sensors, 22(15), 5738. https://doi.org/10.3390/s22155738