Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction Using a Machine Learning Approach
Abstract
:1. Introduction
2. Sensors for NIBP Monitoring
2.1. Photoplethysmogram
2.2. Electrocardiogram
2.3. Tonometer
2.4. Ultrasound
3. Continuous BP Prediction Techniques and Validation
3.1. Pulse Arrival Time (PAT)
3.2. Pulse Transit Time (PTT)
3.3. Pulse Wave Velocity (PWV)
3.4. Machine Learning (ML)
3.5. Validation of Predicted BP According to International Standards
3.5.1. Advancement of Medical Instrumentation (AAMI) Standard
3.5.2. British Hypertension Society (BHS) Protocol
4. Challenges and Future Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovesdy, C.P.; Bleyer, A.J.; Molnar, M.Z.; Ma, J.Z.; Sim, J.J.; Cushman, W.C.; Quarles, L.D.; Kalantar-Zadeh, K. Blood pressure and mortality in U.S. veterans with chronic kidney disease: A cohort study. Ann. Intern. Med. 2013, 159, 233–242. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Home Page. Available online: https://www.who.int/news/item/25-08-2021-more-than-700-million-people-with-untreated-hypertension (accessed on 20 March 2022).
- Kumar, N.; Atrnstrong, D.J. Cardiovascular disease—The silent killer in rheumatoid arthritis. Clin. Med. 2008, 8, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Tayefi, M.; Esmaeili, H.; Saberi Karimian, M.; Amirabadi Zadeh, A.; Ebrahimi, M.; Safarian, M.; Parizadeh, S.M.R.; Ferns, G.A.; Ghayour-Mobarhan, M. The application of a decision tree to establish the parameters associated with hypertension. Comput. Methods Programs Biomed. 2017, 139, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Grosse, S.D.; Schooley, M.W. Conducting research on the economics of hypertension to improve cardiovascular health. Am. J. Prev. Med. 2017, 53, S115–S117. [Google Scholar] [CrossRef]
- García-Fontana, B.; Morales-Santana, S.; Díaz Navarro, C.; Rozas-Moreno, P.; Genilloud, O.; Vicente, F.; Perez, J.; Muñoz-Torres, M. Metabolomic profile related to cardiovascular disease in patients with type 2 diabetes mellitus: A pilot study. Talanta 2016, 148, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Jeong, J.S.; Yun, J.S.; Kwon, H.S.; Baek, K.H.; Song, K.H.; Ahn, Y.B.; Ko, S.H. Hemoglobin glycation index predicts cardiovascular disease in people with type 2 diabetes mellitus: A 10-year longitudinal cohort study. J. Diabetes Complicat. 2018, 32, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Jamil, S.; Siddiq, A. Comparison of CVD risk associated with the long-term use of contraceptives in young females. J. Appl. Pharm. Sci. 2012, 2, 62–66. [Google Scholar]
- Kaneko, H.; Itoh, H.; Kiriyama, H.; Kamon, T.; Fujiu, K.; Morita, K.; Michihata, N.; Jo, T.; Takeda, N.; Morito, H.; et al. Lipid profile and subsequent cardiovascular disease among young adults aged <50 years. Am. J. Cardiol. 2021, 142, 59–65. [Google Scholar] [CrossRef]
- Roguin, A. Scipione Riva-Rocci and the men behind the mercury sphygmomanometer. Int. J. Clin. Pract. 2006, 60, 73–79. [Google Scholar] [CrossRef]
- Bard, D.M.; Joseph, J.I.; van Helmond, N. Cuff-less methods for blood pressure telemonitoring. Front. Cardiovasc. Med. 2019, 6, 40. [Google Scholar] [CrossRef]
- Farhan, K.; Naqvi, S.; Rizvi, S.; Zafar, A.; Rawala, M.S. Comparison between blood pressure readings using a mercury versus an aneroid sphygmomanometer. Blood Press. Monit. 2020, 25, 34–38. [Google Scholar] [CrossRef]
- Laurentino, G.C.; Loenneke, J.P.; Teixeira, E.L.; Nakajima, E.; Iared, W.; Tricoli, V. The effect of cuff width on muscle adaptations after blood flow restriction training. Med. Sci. Sports Exerc. 2016, 48, 920–925. [Google Scholar] [CrossRef]
- Destefano, R.M.; Schmitt, F.; Starke, S.; Helena, E. Adequacy of sphygmomanometer cuff to brachial circumference of people attended in Primary Health Care Centers. Rev. Bras. Epidemiol. 2017, 20, 81–90. [Google Scholar] [CrossRef]
- Akash, M.R.R.; Yousuf; Shikder, K. IoT based real time health monitoring system. In Proceedings of the Research, Innovation, Knowledge Management and Technology Application for Business Sustainability (INBUSH), Greater Noida, India, 19–21 February 2020; pp. 167–171. [Google Scholar]
- Anast, N.; Olejniczak, M.; Ingrande, J.; Brock-Utne, J. Impact de l’emplacement du brassard pneumatique sur la précision des mesures non invasives de la tension artérielle chez les patients obèses: Une étude observationnelle. Can. J. Anaesth. 2016, 63, 298–306. [Google Scholar] [CrossRef]
- Dionne, J.M.; Bremner, S.A.; Baygani, S.K.; Batton, B.; Ergenekon, E.; Bhatt-Mehta, V.; Dempsey, E.; Kluckow, M.; Pesco Koplowitz, L.; Apele-Freimane, D.; et al. Method of blood pressure measurement in neonates and infants: A systematic review and analysis. J. Pediatr. 2020, 221, 23–31.e5. [Google Scholar] [CrossRef]
- Gerin, W.; Ogedegbe, G.; Schwartz, J.E.; Chaplin, W.F.; Goyal, T.; Clemow, L.; Davidson, K.W.; Burg, M.; Lipsky, S.; Kentor, R.; et al. Assessment of the white-coat effect. J. Hypertens. 2006, 24, 67–74. [Google Scholar] [CrossRef]
- Abreu, P.; Carneiro, F.; Restivo, M.T. Screening system for cardiac problems through non-invasive identification of blood pressure waveform. Information 2020, 11, 150. [Google Scholar] [CrossRef]
- Juteau, N.; Gosselin, B. Wearable wireless-enabled oscillometric sphygmomanometer: A flexible ambulatory tool for blood pressure estimation. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1287–1298. [Google Scholar] [CrossRef]
- Alpert, B.S.; Quinn, D.E.; Friedman, B.C.; Matsumura, P.M.; Dart, R.A.; Donehoo, R.F. Evaluating the impact of motion artifact on noninvasive blood pressure devices. J. Clin. Hypertens. 2020, 22, 585–589. [Google Scholar] [CrossRef]
- Al-Riyami, H.; Nadar, S.K. The mercury sphygmomanometer: Soon a museum piece! J. Hum. Hypertens. 2020, 35, 490–491. [Google Scholar] [CrossRef]
- Jobbágy, Á.; Nagy, P. The Effect of Occlusion with the Cuff. In EMBEC & NBC 2017; Eskola, H., Väisänen, O., Viik, J., Hyttinen, J., Eds.; Springer: Singapore, 2018; Volume 65, pp. 9–12. ISBN 978-9-81105-121-0. [Google Scholar]
- Jeon, Y.S.; Kim, Y.S.; Lee, J.A.; Seo, K.H.; In, J.H. Rumpel-Leede phenomenon associated with noninvasive blood pressure monitoring—A case report. Korean J. Anesthesiol. 2010, 59, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Ogedegbe, G.; Pickering, T. Principles and techniques of blood pressure measurement. Cardiol. Clin. 2010, 28, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Mojón, A.; Hermida-Ayala, R.G.; Smolensky, M.H.; Fernández, J.R. Extent of asleep blood pressure reduction by hypertension medications is ingestion-time dependent: Systematic review and meta-analysis of published human trials. Sleep Med. Rev. 2021, 59, 101454. [Google Scholar] [CrossRef] [PubMed]
- Ghazal, T.M.; Hasan, M.K.; Alshurideh, M.T.; Alzoubi, H.M.; Ahmad, M.; Akbar, S.S.; Al Kurdi, B.; Akour, I.A. IoT for smart cities: Machine learning approaches in smart healthcare—A review. Future Internet 2021, 13, 218. [Google Scholar] [CrossRef]
- Jordan, T.B.; Meyers, C.L.; Schrading, W.A.; Donnelly, J.P. The utility of iPhone oximetry apps: A comparison with standard pulse oximetry measurement in the emergency department. Am. J. Emerg. Med. 2020, 38, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Javorka, K.; Hašková, K.; Czippelová, B.; Zibolen, M.; Javorka, M. Baroreflex sensitivity and blood pressure in premature infants—Dependence on gestational age, postnatal age and sex. Physiol. Res. 2021, 70, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Charlton, P.H.; Kyriacou, P.A.; Mant, J.; Marozas, V.; Chowienczyk, P.; Alastruey, J. Wearable photoplethysmography for cardiovascular monitoring. Proc. IEEE Inst. Electr. Electron. Eng. 2022, 110, 355–381. [Google Scholar] [CrossRef] [PubMed]
- Qawqzeh, Y.K.; Bajahzar, A.B.; Jemmali, M.; Otoom, M.M.; Thaljaoui, A. Classification of diabetes using photoplethysmogram (PPG) waveform analysis: Logistic regression modeling. Biomed Res. Int. 2020, 2020, 3764653. [Google Scholar] [CrossRef]
- Sun, B.; Wang, C.; Chen, X.; Zhang, Y.; Shao, H. PPG signal motion artifacts correction algorithm based on feature estimation. Optik 2019, 176, 337–349. [Google Scholar] [CrossRef]
- Marefat, F.; Erfani, R.; Mohseni, P. A 1-V 8.1-µW PPG-recording front-end with > 92-dB DR using light-to-digital conversion with signal-aware DC subtraction and ambient light removal. IEEE Solid-State Circuits Lett. 2019, 3, 17–20. [Google Scholar] [CrossRef]
- Singh, O.; Sunkaria, R.K. Detection of onset, systolic peak and dicrotic notch in arterial blood pressures pulses. Meas. Control. 2017, 50, 170–176. [Google Scholar] [CrossRef]
- Liu, H.; Allen, J.; Khalid, S.G.; Chen, F.; Zheng, D. Filtering-induced time shifts in photoplethysmography pulse features measured at different body sites: The importance of filter definition and standardization. Physiol. Meas. 2021, 42, 074001. [Google Scholar] [CrossRef]
- Siaron, K.B.; Cortes, M.X.; Stutzman, S.E.; Venkatachalam, A.; Ahmed, K.M.; Olson, D.M. Blood pressure measurements are site dependent in a cohort of patients with neurological illness. Sci. Rep. 2020, 10, 3382. [Google Scholar] [CrossRef]
- Ding, X.R.; Zhang, Y.T.; Liu, J.; Dai, W.X.; Tsang, H.K. continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE. Trans. Biomed. Eng. 2016, 63, 964–972. [Google Scholar] [CrossRef]
- Waloszek, J.M.; Woods, M.J.; Bryne, M.L.; Nicholas, C.L.; Bei, B.; Murray, G.; Raniti, M.; Allen, N.B.; Trinder, J. Nocturnal indicators of increased cardiovascular risk in depressed adolescent girls. J. Sleep Res. 2016, 25, 216–224. [Google Scholar] [CrossRef]
- Byfield, R.; Miller, M.; Miles, J.; Guidoboni, G.; Lin, J. Towards robust blood pressure estimation from pulse wave velocity measured by photoplethysmography sensors. IEEE Sens. J. 2022, 22, 2475–2483. [Google Scholar] [CrossRef]
- Xing, X.; Ma, Z.; Zhang, M.; Zhou, Y.; Dong, W.; Song, M. An unobtrusive and calibration-free blood pressure estimation method using photoplethysmography and biometrics. Sci. Rep. 2019, 9, 8611. [Google Scholar] [CrossRef]
- Aliani, C.; Rossi, E.; Francia, P.; Bocchi, L. Vascular ageing and peripheral pulse: An improved model for assessing their relationship. Physiol. Meas. 2021, 42, 125002. [Google Scholar] [CrossRef]
- Simjanoska, M.; Gjoreski, M.; Gams, M.; Bogdanova, A.M. Non-invasive blood pressure estimation from ECG using machine learning techniques. Sensors 2018, 18, 1160. [Google Scholar] [CrossRef]
- Sanamdikar, S.T.; Hamde, S.T.; Asutkar, V.G. Extraction of different features of ECG signal for detection of cardiac arrhythmias by using wavelet transformation. In Proceedings of the International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, Tamil Nadu, India, 1–2 August 2017; pp. 2407–2412. [Google Scholar]
- Vijayakumar, T.; Vinothkanna, R.; Duraipandian, M. Fusion based feature extraction analysis of ECG signal interpretation—A systematic approach. J. Artif. Intell. Capsul. Netw. 2021, 3, 1–16. [Google Scholar]
- Wijaya, C.; Andrian; Harahap, M.; Christnatalis, C.; Turnip, M.; Turnip, A. Abnormalities state detection from P-wave, QRS complex, and T-wave in noisy ECG. J. Phys. Conf. Ser. 2019, 1230, 012015. [Google Scholar] [CrossRef]
- Sagirova, Z.; Kuznetsova, N.; Gogiberidze, N.; Gognieva, D.; Suvorov, A.; Chomakhidze, P.; Omboni, S.; Saner, H.; Kopylop, P. Cuffless blood pressure measurement using a smartphone-case based ECG monitor with photoplethysmography in hypertensive patients. Sensors 2021, 21, 3535. [Google Scholar] [CrossRef]
- Nidigattu, G.R.; Mattela, G.; Jana, S. Non-invasive modeling of heart rate and blood pressure from a photoplethysmography by using machine learning techniques. In Proceedings of the International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 7–11 January 2020; pp. 7–12. [Google Scholar]
- Salvi, P.; Grillo, A.; Parati, G. Noninvasive estimation of central blood pressure and analysis of pulse waves by applanation tonometry. Hypertens. Res. 2015, 38, 646–648. [Google Scholar] [CrossRef]
- Kim, J.; Kim, W.S. A paired stretchable printed sensor system for ambulatory blood pressure monitoring. Sens. Actuators A Phys. 2016, 238, 329–336. [Google Scholar] [CrossRef]
- Athaya, T.; Choi, S. A review of noninvasive methodologies to estimate the blood pressure waveform. Sensors 2022, 22, 3953. [Google Scholar] [CrossRef]
- Saito, Y.; Kitahara, H.; Nakayama, T.; Fujimoto, Y.; Kobayashi, Y. Night-time blood pressure variability negatively correlated with reactive hyperemia index. Int. J. Cardiol. 2017, 230, 332–334. [Google Scholar] [CrossRef]
- Bell, V.; Mccabe, E.L.; Larson, M.G.; Rong, J.; Merz, A.A.; Osypiuk, E.; Lehman, B.T.; Stantchev, P.; Aragam, J.; Benjamin, E.J.; et al. Relations between aortic stiffness and left ventricular mechanical function in the community. J. Am. Heart Assoc. 2017, 6, e004903. [Google Scholar] [CrossRef]
- Salvi, P.; Lio, G.; Labat, C.; Ricci, E.; Pannier, B.; Benetos, A. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: The PulsePen device. J. Hypertens. 2004, 22, 2285–2293. [Google Scholar] [CrossRef]
- Wilkinson, I.B.; Fuchs, S.A.; Jansen, I.M.; Spratt, J.C.; Murray, G.D.; Cockcroft, J.R.; Webb, D.J. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J. Hypertens. 1998, 16, 2079–2084. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, J.; Watabe, D.; Hatanaka, R.; Hanasawa, T.; Metoki, H.; Asayama, K.; Ohkubo, T.; Totsune, K.; Imai, Y. Enhanced radial late systolic pressure augmentation in hypertensive patients with left ventricular hypertrophy. Am. J. Hypertens. 2006, 19, 27–32. [Google Scholar] [CrossRef]
- Morales-Acuna, F.; Ratcliffe, B.; Harrison, C.; Crowe, S.; Bockover, E.; Pawlak, R.; Gurovich, A.N. Comparison between cuff-based and radial tonometry exercise-induced central blood pressure. Eur. J. Appl. Physiol. 2019, 119, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Z.; Chen, Z.; Wang, X.; Tian, Y.; Shao, L.; Zhu, M. Central aortic systolic blood pressure exhibits advantages over brachial blood pressure measurements in chronic kidney disease risk prediction in women. Kidney Blood Press. Res. 2018, 43, 1375–1387. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Fan, W.; Zhang, R.; Zhang, Q.; Li, Y.; Wang, J. Validation of the noninvasive assessment of central blood pressure by the sphygmocor and omron devices against the invasive catheter measurement. Am. J. Hypertens. 2009, 24, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Harju, J.; Vehkaoja, A.; Kumpulainen, P.; Campadello, S.; Lindroos, V.; Yli-Hankala, A.; Oksala, N. Comparison of non-invasive blood pressure monitoring using modified arterial applanation tonometry with intra-arterial measurement. J. Clin. Monit. Comput. 2018, 32, 13–22. [Google Scholar] [CrossRef]
- Rourke, M.F.O. Carotid artery tonometry: Pros and cons. Am. J. Hypertens. 2016, 29, 296–298. [Google Scholar]
- Meusel, M.; Wegerich, P.; Bode, B.; Stawschenko, E.; Kusche-vihrog, K.; Hellbrück, H.; Gehring, H. Measurement of blood pressure by ultrasound—The applicability of devices, algorithms and a view in local hemodynamics. Diagnostics 2021, 11, 2255. [Google Scholar] [CrossRef]
- Dahroud, B.D.; Mokarram, R.R.; Khiabani, M.S.; Hamishehkar, H.; Bialvaei, A.Z.; Yousefi, M.; Kafil, H.S. Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp.casei ATTC 39392. Int. J. Biol. Macromol. 2016, 86, 462–467. [Google Scholar] [CrossRef]
- van Campen, C.; Verheugt, F.; Visser, F.C. Cerebral blood flow changes during tilt table testing in healthy volunteers, as assessed by Doppler imaging of the carotid and vertebral arteries. Clin. Neurophysiol. Pract. 2018, 3, 91–95. [Google Scholar] [CrossRef]
- Oglat, A.A.; Matjafari, M.; Suardi, N.; Oqlat, M.A.; Abdelrahman, M.A.; Oqlat, A.A. A review of medical doppler ultrasonography of blood flow in general and especially in common carotid artery. J. Med. Ultrasound 2018, 26, 3–13. [Google Scholar] [CrossRef]
- Aaslid, R. Accuracy of an ultrasound Doppler servo method for noninvasive determination of instantaneous and mean arterial blood pressure. Circulation 1981, 64, 753–759. [Google Scholar] [CrossRef]
- Patey, S.J.; Corcoran, J.P. Physics of ultrasound. Anaesth. Intensive Care 2021, 22, 58–63. [Google Scholar] [CrossRef]
- Cameli, M.; Mondillo, S.; Righini, F.M.; Lisi, M.; Dokollari, A.; Lindqvist, P.; Machherini, M.; Henein, M. Left ventricular deformation and myocardial fibrosis in patients with advanced heart failure requiring transplantation. J. Card. Fail. 2016, 22, 901–907. [Google Scholar] [CrossRef]
- Kumar, N.; Khader, A.; Pai, R.; Khan, S.H.; Kyriacou, P.A. Fluid structure interaction study of stenosed carotid artery considering the effects of blood pressure. Int. J. Eng. Sci. 2020, 154, 103341. [Google Scholar] [CrossRef]
- Zakrzewski, A.M.; Huang, A.Y.; Zubajlo, R.; Anthony, B.W. Real-time blood pressure estimation from force-measured ultrasound. IEEE Trans. Biomed. Eng. 2018, 65, 2405–2416. [Google Scholar] [CrossRef]
- Sigrist, R.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willman, J.K. Ultrasound elastography: Review of techniques and clinical applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
- Zakrzewski, A.M.; Anthony, B.W. Non-invasive blood pressure estimation using ultrasound and simple finite element models. IEEE Trans. Biomed. Eng. 2018, 65, 2011–2022. [Google Scholar] [CrossRef]
- Tsui, B.C.H.; Tsui, J. A flexible gel pad as an effective medium for scanning irregular surface anatomy. J. Can. Anesth. 2012, 59, 226–227. [Google Scholar] [CrossRef]
- Chasset, F.; Soria, A.; Moguelet, P.; Mathian, A.; Auger, Y.; Francès, C.; Barete, S. Contact dermatitis due to ultrasound gel: A case report and published work review. J. Dermatol. 2016, 43, 318–320. [Google Scholar] [CrossRef]
- Bote, J.M.; Recas, J.; Hermida, R. Evaluation of blood pressure estimation models based on pulse arrival time. Comput. Electr. Eng. 2020, 84, 106616. [Google Scholar] [CrossRef]
- Yoon, Y.Z.; Kang, J.M.; Kwon, Y.; Park, S.; Noh, S.; Kim, Y.; Park, J.; Hwang, S.W. Cuff-less blood pressure estimation using pulse waveform analysis and pulse arrival time. IEEE J. Biomed. Health Inform. 2018, 22, 1068–1074. [Google Scholar] [CrossRef]
- Tang, Z.; Tamura, T.; Sekine, M.; Huang, M.; Chen, W.; Yoshida, M.; Sakatani, K.; Kobayashi, H.; Kanaya, S. A chair-based unobtrusive cuffless blood pressure monitoring system based on pulse arrival time. IEEE J. Biomed. Health Inform. 2016, 21, 1194–1205. [Google Scholar] [CrossRef]
- Wong, M.Y.M.; Pickwell-MacPherson, E.; Zhang, Y.T.; Cheng, J.C.Y. The effects of pre-ejection period on post-exercise systolic blood pressure estimation using the pulse arrival time technique. Eur. J. Appl. Physiol. 2011, 111, 135–144. [Google Scholar] [CrossRef]
- Escobar-Restrepo, B.; Torres-Villa, R.; Kyriacou, P.A. Evaluation of the linear relationship between pulse arrival time and blood pressure in ICU patients: Potential and limitations. Front. Physiol. 2018, 9, 1848. [Google Scholar] [CrossRef]
- Yang, S.; Sohn, J.; Lee, S.; Lee, J.; Kim, H.C. Estimation and validation of arterial blood pressure using photoplethysmogram morphology features in conjunction with pulse arrival time in large open databases. IEEE J. Biomed. Health Inform. 2021, 25, 1018–1030. [Google Scholar] [CrossRef]
- Tanveer, M.S.; Hasan, M.K. Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform-based ANN-LSTM network. Biomed. Signal Process. Control 2019, 51, 382–392. [Google Scholar] [CrossRef]
- Gan, K.B.; Pua, H.L. Development of continuous blood pressure measurement system using photoplethysmograph and pulse transit time. Int. J. Robot. Autom. 2021, 3, 8–12. [Google Scholar]
- Block, R.C.; Yavarimanesh, M.; Natarajan, K.; Carek, A.; Mousavi, A.; Chandrasekhar, A.; Kim, C.S.; Zhu, J.X.; Schifitto, G.; Mestha, L.K.; et al. Conventional pulse transit times as markers of blood pressure changes in humans. Sci. Rep. 2020, 10, 16373. [Google Scholar] [CrossRef]
- Miao, F.; Liu, Z.D.; Liu, J.K.; Wen, B.; He, Q.Y.; Li, Y. Multi-sensor fusion approach for cuff-less blood pressure measurement. IEEE J. Biomed. Health Inform. 2020, 24, 79–91. [Google Scholar] [CrossRef]
- Kao, Y.H.; Chao, P.C.P.; Wey, C.L. Design and validation of a new PPG module to acquire high-quality physiological signals for high-accuracy biomedical sensing. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 69000210. [Google Scholar] [CrossRef]
- Li, J.Q.; Li, R.; Chen, Z.Z.; Deng, G.Q.; Wang, H.; Mavromoustakis, C.X.; Song, H.; Ming, Z. Design of a continuous blood pressure measurement system based on pulse wave and ECG signals. IEEE J. Transl. Eng. Health Med. 2018, 6, 1900114. [Google Scholar] [CrossRef]
- Kumar, D.P.; Amgoth, T.; Sekhara, C.; Annavarapu, R. Machine learning algorithms for wireless sensor networks: A survey. Inf. Fusion 2018, 49, 1–25. [Google Scholar] [CrossRef]
- Cui, F.; Zhou, H.S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens. Bioelectron. 2020, 165, 112349. [Google Scholar] [CrossRef] [PubMed]
- Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Schwalbe, N.; Wahl, B. Artificial intelligence and the future of global health. Lancet 2020, 395, 1579–1586. [Google Scholar] [CrossRef]
- Wong, Z.S.Y.; Zhou, J.; Zhang, Q. Artificial intelligence for infectious disease Big Data analytics. Infect. Dis. Health 2019, 24, 44–48. [Google Scholar] [CrossRef]
- Waugh, W.; Allen, J.; Wightman, J.; Sims, A.J.; Beale, T.A.W. Novel signal noise reduction method through cluster analysis applied to photoplethysmography. Comput. Math. Med. 2018, 2018, 6812404. [Google Scholar] [CrossRef]
- Nargesian, F.; Samulowitz, H.; Khurana, U.; Khalil, E.B.; Turaga, D. Learning Feature Engineering for Classification. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 2529–2535. [Google Scholar]
- Ebrahim, M.P.; Heydari, F.; Wu, T.; Walker, K.; Joe, K.; Redoute, J.; Yuce, M.R. Blood pressure estimation using on-body continuous wave radar and photoplethysmogram in various posture and exercise conditions. Sci. Rep. 2019, 9, 16346. [Google Scholar] [CrossRef]
- Gilani, S.I.; Hammad, M.; Ali, M. Revisiting Fanger’s thermal comfort model using mean blood pressure as a bio-marker: An experimental investigation. Appl. Therm. Eng. 2016, 109, 35–43. [Google Scholar] [CrossRef]
- Esmaelpoor, J.; Moradi, M.H.; Kadkhodamohammadi, A. A multistage deep neural network model for blood pressure estimation using photoplethysmogram signals. Comput. Biol. Med. 2020, 120, 103719. [Google Scholar] [CrossRef]
- Suboh, M.Z.; Nayan, N.A.; Abdullah, N.; Yusof, N.A.M.; Hamid, M.A.; Arinfin, A.S.K.; Daud, S.M.A.; Kamaruddin, M.A.; Jaafar, R.; Jamal, R. Cardiovascular disease prediction among the malaysian cohort participants using electrocardiogram. Comput. Mater. Contin. 2022, 71, 1111–1132. [Google Scholar]
- Agham, N.D.; Chaskar, U.M. An advanced LAN model based on optimized feature algorithm: Towards hypertension interpretability. Biomed. Signal Process. Control 2021, 68, 102760. [Google Scholar] [CrossRef]
- Demers, D.; Wachs, D. Physiology, Mean Arterial Pressure. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538226 (accessed on 13 July 2022).
- Gupta, V.; Mittal, M.; Mittal, V.; Saxena, M.K. BP signal analysis using emerging techniques and its validation using ECG signal. Sens. Imaging 2021, 22, 25. [Google Scholar] [CrossRef]
- Ayon, S.I.; Islam, M.M.; Hossain, M.R. Coronary artery heart disease prediction: A comparative study of computational intelligence techniques. IETE J. Res. 2020, 1–20. [Google Scholar] [CrossRef]
- Wu, C.M.; Chuang, C.Y.; Chen, Y.J.; Chen, S.C. A new estimate technology of non-invasive continuous blood pressure measurement based on electrocardiograph. Adv. Mech. Eng. 2016, 8, 1687814016653689. [Google Scholar] [CrossRef]
- Khalid, S.G.; Zhang, J.; Chen, F.; Zheng, D. Blood pressure estimation using photoplethysmography only: Comparison between different machine learning approaches. J. Healthc. Eng. 2018, 2018, 1548647. [Google Scholar] [CrossRef]
- Mejía-Mejía, E.; May, J.M.; Elgendi, M.; Kyriacou, P.A. Classification of blood pressure in critically ill patients using photoplethysmography and machine learning. Comput. Methods Programs Biomed. 2021, 208, 106222. [Google Scholar] [CrossRef]
- El-Hajj, C.; Kyriacou, P.A. Cuffless blood pressure estimation from PPG signals and its derivatives using deep learning models. Biomed. Signal Process. Control 2021, 70, 102984. [Google Scholar] [CrossRef]
- Teplitzky, B.A.; Mcroberts, M.; Ghanbari, H. Deep learning for comprehensive ECG annotation. Heart Rhythm 2020, 17, 881–888. [Google Scholar] [CrossRef]
- Qin, K.; Huang, W.; Zhang, T. Deep generative model with domain adversarial training for predicting arterial blood pressure waveform from photoplethysmogram signal. Biomed. Signal Process. Control 2021, 70, 102972. [Google Scholar] [CrossRef]
- Sun, Y.; Lo, F.P.; Lo, B. EEG-based user identification system using 1D-convolutional long short-term memory neural networks. Expert Syst. Appl. 2019, 125, 259–267. [Google Scholar] [CrossRef]
- Baloglu, U.B.; Talo, M.; Yildirim, O.; Tan, R.S.; Acharya, U.R. Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognit. Lett. 2019, 122, 23–30. [Google Scholar] [CrossRef]
- Baek, S.; Jang, J.; Yoon, S. End-to-End blood pressure prediction via fully convolutional networks. IEEE Access 2019, 7, 185458–185468. [Google Scholar] [CrossRef]
- Ibtehaz, N.; Rahman, M.S. PPG2ABP: Translating photoplethysmogram (PPG) signals to arterial blood pressure (ABP) waveforms using fully convolutional neural networks. arXiv, 2020; arXiv:2005.01669. [Google Scholar]
- Yang, B.; Sun, S.; Li, J.; Lin, X.; Tian, Y. Traffic flow prediction using LSTM with feature enhancement. Neurocomputing 2018, 332, 320–327. [Google Scholar] [CrossRef]
- Sujadevi, V.G.; Soman, K.P.; Vinayakumar, R.; Sankar, A.U.P. Deep models for phonocardiography (PCG) classification. In Proceedings of the International Conference on Intelligent Communication and Computational Techniques (ICCT), Jaipur, India, 22–23 December 2017; pp. 211–216. [Google Scholar]
- Baker, S.; Xiang, W.; Atkinson, I. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms. Comput. Methods Programs Biomed. 2021, 207, 106191. [Google Scholar] [CrossRef]
- Wang, T.W.; Lin, S.F. Wearable piezoelectric-based system for continuous beat-to-beat blood pressure measurement. Sensors 2020, 20, 851. [Google Scholar] [CrossRef]
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuff-less blood pressure estimation algorithms for continuous health-care monitoring. IEEE Trans. Biomed. Eng. 2017, 64, 859–869. [Google Scholar] [CrossRef]
- Jeong, D.U.; Lim, K.M. Combined deep CNN–LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features. Sci. Rep. 2021, 11, 13539. [Google Scholar] [CrossRef]
* Ref. | Source | Model | Feature | Subjects | BP | MAE (mmHg) | SD (mmHg) | Grade |
---|---|---|---|---|---|---|---|---|
AAMI | ≥85 | SBP/DBP/MAP | ≤5 | ≤8 | Pass | |||
[39] | PPG-PPG | PWV, 14 regressors | PPG | 26 (22 male, 4 female) | SBP DBP MAP | 2.117 2.935 - | 0.257 0.721 - | Low dataset |
[100] | Single PPG | RT, MLR, SVM | PPG | Queensland 32 | SBP DBP MAP | −0.1 −0.6 - | 6.5 5.2 - | Low dataset |
[103] | PPG, ABP | KNN, ANN, SVM | PRV | MIMIC II 500 | SBP | 4.74 | 2.33 | Pass |
DBP | 1.78 | 0.14 | Pass | |||||
MAP | 2.55 | 0.78 | Pass | |||||
[104] | Single PPG, ABP | MLR, Bi-RNN, Attention mechanism | MIMIC II 947 | SBP | −0.48 | 9.15 | Pass | |
52 PPG | DBP MAP | −0.49 - | 5.10 - | Pass NA | ||||
[109] | PPG, ECG, ABP | MIMIC II 379 | SBP | −1.23 | 12.80 | Fail | ||
1D CNN | Raw | DBP MAP | 0.13 - | 7.54 - | Pass *** NA | |||
[109] ** Cal. | PPG, ECG, ABP | 1D CNN | Raw | MIMIC II 379 | SBP | −1.29 | 7.58 | Pass |
DBP | −0.48 | 5.08 | Pass | |||||
MAP | - | - | NA | |||||
PPG | U-Net, MultiResUNet | MIMIC II 942 | SBP | −1.582 | 10.688 | Fail | ||
[110] | PPG | DBP | 1.619 | 6.859 | Pass | |||
MAP | 0.631 | 4.962 | Pass | |||||
MIMIC 6972 | SBP | 4.41 | 6.11 | Pass | ||||
[113] | PPG, ECG | CNN-LSTM | Raw | DBP | 2.91 | 4.23 | Pass | |
MAP | 2.77 | 3.88 | Pass | |||||
PPG, ECG, ABP | LR, DT, SVM, AdaBoost, RF | PPG, PAT, HR | MIMIC II 942 | SBP | −0.06 | 9.88 | Fail | |
[115] | DBP | 0.36 | 5.70 | Pass | ||||
MAP | 0.16 | 5.25 | Pass | |||||
[115] Cal. | PPG, ECG, ABP | LR, DT, SVM, AdaBoost, RF | PPG, PAT, HR | MIMIC II 57 | SBP DBP MAP | 5.45 3.52 - | 8.21 4.31 - | Low dataset |
* Ref. | Source | Model | Feature | Subjects | BP | Absolute Difference | Grade | ||
---|---|---|---|---|---|---|---|---|---|
≤5 | ≤10 | ≤15 | |||||||
BHS | SBP/DBP/MAP | 60% | 85% | 95% | A | ||||
50% | 75% | 90% | B | ||||||
40% | 65% | 85% | C | ||||||
[109] | PPG, ECG, ABP | MIMIC II 379 | SBP | 40.6% | 67.5% | 80.2% | D | ||
1D CNN | Raw | DBP MAP | 64.1% 62.0% | 87.1% 87.1% | 95.0% 95.8% | A A | |||
[109] ** Cal. | PPG, ECG, ABP | 1D CNN | Raw | MIMIC II 379 | SBP | 59.6% | 87.3% | 93.7% | B |
DBP MAP | 79.2% 79.7% | 95.3% 96.0% | 97.9% 99.2% | A A | |||||
[110] | PPG | U-Net, MultiResUNet | PPG | MIMIC II 942 | SBP | 70.8% | 85.3% | 90.9% | B |
DBP | 82.8% | 92.2% | 95.7% | A | |||||
MAP | 87.4% | 95.2% | 97.7% | A | |||||
[113] | PPG, ECG | CNN-LSTM | Raw | MIMIC 6972 | SBP | 67.66% | 89.82% | 96.82% | A |
DBP | 82.79% | 96.12% | 99.09% | A | |||||
MAP | 84.21% | 97.38% | 99.58% | A | |||||
[115] | PPG, ECG, ABP | LR, DT, SVM, AdaBoost, RF | PPG, PAT, HR | MIMIC II 942 | SBP | 34.1% | 56.5% | 72.7% | D |
DBP | 62.7% | 87.1% | 95.7% | A | |||||
MAP | 54.2% | 81.8% | 93.1% | B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, S.N.A.; Nayan, N.A.; Jaafar, R.; May, Z. Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction Using a Machine Learning Approach. Sensors 2022, 22, 6195. https://doi.org/10.3390/s22166195
Ismail SNA, Nayan NA, Jaafar R, May Z. Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction Using a Machine Learning Approach. Sensors. 2022; 22(16):6195. https://doi.org/10.3390/s22166195
Chicago/Turabian StyleIsmail, Siti Nor Ashikin, Nazrul Anuar Nayan, Rosmina Jaafar, and Zazilah May. 2022. "Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction Using a Machine Learning Approach" Sensors 22, no. 16: 6195. https://doi.org/10.3390/s22166195
APA StyleIsmail, S. N. A., Nayan, N. A., Jaafar, R., & May, Z. (2022). Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction Using a Machine Learning Approach. Sensors, 22(16), 6195. https://doi.org/10.3390/s22166195