Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention
Abstract
:1. Introduction
- A novel attention mechanism, i.e., AMAM, is proposed to extract different modalities from input time-series data; from this, the decomposition weights can be automatically learned in the training process.
- An extra additive path is introduced to collect decomposed modalities, with these values added to the first-stage prediction data.
2. Related Theoretical Background
2.1. Transformer
2.2. Informer
2.3. Bidirectional Encoder Representation from Transformer
3. Materials and Methods
3.1. Data Collection
3.2. Data Preprocessing
3.3. Auto-Modal Network for Predicting AQI
4. Results and Discussion
4.1. Evaluation Metrics
4.2. Performance of Auto-Modal Network
4.3. Performance of Prediction Models
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Erickson, L.E.; Newmark, G.L.; Higgins, M.J.; Wang, Z. Nitrogen Oxides and Ozone in Urban Air: A Review of 50 plus Years of Progress. Environ. Prog. Sustain. Energy 2020, 39, e13484. [Google Scholar] [CrossRef]
- World Health Organization. Ambient (Outdoor) Air Pollution; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Appel, K.W.; Bash, J.O.; Fahey, K.M.; Foley, K.M.; Gilliam, R.C.; Hogrefe, C.; Hutzell, W.T.; Kang, D.; Mathur, R.; Murphy, B.N.; et al. The Community Multiscale Air Quality (CMAQ) Model Versions 5.3 and 5.3.1: System Updates and Evaluation. Geosci. Model Dev. 2021, 14, 2867–2897. [Google Scholar] [CrossRef] [PubMed]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4.3; NCAR/UCAR: Boulder, CO, USA, 2021. [Google Scholar]
- Ren, X.; Zhao, Y.; Wu, L.; Jiang, J.; Zhang, C.; Tang, X.; Han, L.; Zhu, M.; Wang, Z. Towards Efficient Digital Governance of City Air Pollution Using Technique of Big Atmospheric Environmental Data. IOP Conf. Ser. Earth Environ. Sci. 2020, 502, 012031. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, Z.; Li, K.; Huang, T.; Ma, J.; Wen, G. Degradation of Micropollutants and Formation of Oxidation By-Products during the Ozone/Peroxymonosulfate System: A Critical Review. Water 2021, 13, 3126. [Google Scholar] [CrossRef]
- Mlakar, P.; Boznar, M. Perceptron Neural Network-Based Model Predicts Air Pollution. In Proceedings of the Proceedings Intelligent Information Systems. IIS’97; IEEE Comput. Soc: Grand Bahama Island, Bahamas, 1997; pp. 345–349. [Google Scholar]
- Wu, H.; Hu, M.; Zhang, Y.; Han, Y. An Empirical Mode Decomposition for Establishing Spatiotemporal Air Quality Trends in Shandong Province, China. Sustainability 2021, 13, 12901. [Google Scholar] [CrossRef]
- Zhao, X.; Song, M.; Liu, A.; Wang, Y.; Wang, T.; Cao, J. Data-Driven Temporal-Spatial Model for the Prediction of AQI in Nanjing. J. Artif. Intell. Soft Comput. Res. 2020, 10, 255–270. [Google Scholar] [CrossRef]
- Shih, S.-Y.; Sun, F.-K.; Lee, H. Temporal Pattern Attention for Multivariate Time Series Forecasting. Mach. Learn. 2019, 108, 1421–1441. [Google Scholar] [CrossRef]
- Liu, D.-R.; Hsu, Y.-K.; Chen, H.-Y.; Jau, H.-J. Air Pollution Prediction Based on Factory-Aware Attentional LSTM Neural Network. Computing 2021, 103, 75–98. [Google Scholar] [CrossRef]
- Ge, L.; Wu, K.; Zeng, Y.; Chang, F.; Wang, Y.; Li, S. Multi-Scale Spatiotemporal Graph Convolution Network for Air Quality Prediction. Appl. Intell. 2021, 51, 3491–3505. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Feng, L.Q.; Tang, J.X.; Zhao, W.X.; Ding, Z.P.; Li, A.; Zheng, Z.X. Automatically recognizing four-legged animal behaviors to enhance welfare using spatial temporal graph convolutional networks. Appl. Anim. Behav. Sci. 2022, 249, 105594. [Google Scholar] [CrossRef]
- Dama, F.; Sinoquet, C. Time Series Analysis and Modeling to Forecast: A Survey. arXiv 2021, arXiv:2104.00164. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems NIPS’17, Long Beach, CA, USA, 4–9 September 2017; pp. 6000–6010. [Google Scholar]
- Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; Sun, L. Transformers in Time Series: A Survey. arXiv 2022, arXiv:2202.07125. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting 2021. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Liu, H.; Zhang, X. AQI Time Series Prediction Based on a Hybrid Data Decomposition and Echo State Networks. Environ. Sci. Pollut. Res. 2021, 28, 51160–51182. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Ecology and Environment of the People’s Republic of China. Technical Regulation on Ambient Air Quality Index; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2016.
- Jiang, H.Z.; Yuan, W.D.; Ru, Y.; Chen, Q.; Wang, J.P.; Zhou, H.P. Feasibility of identifying the authenticity of fresh and cooked mutton kebabs using visible and near-infrared hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 282, 121689. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Li, Y.; Li, Z.; Guo, Y.; Ni, C. Inter-Hour Forecast of Solar Radiation Based on Long Short-Term Memory with Attention Mechanism and Genetic Algorithm. Energies 2022, 15, 1062. [Google Scholar] [CrossRef]
- Ahajjam, M.A.; Licea, D.B.; Ghogho, M.; Kobbane, A. Short-Term Multi-Horizon Residential Electric Load Forecasting Using Deep Learning and Signal Decomposition Methods. arXiv 2022, arXiv:2202.03264. [Google Scholar]
Datasets | Number of Sample Couples | Ratio |
---|---|---|
Training | 6720 | 80% |
Validation | 840 | 10% |
Test | 840 | 10% |
Total | 8400 | 100% |
Type | Neurons/Axes/Ratio | Input Size | Position |
---|---|---|---|
Linear | 1 | 48 × 48 | Feed-Forward 1 |
Transpose | 1, 2 1 | 48 × 1 | Feed-Forward 1 |
Broadcast Add | - | 1 × 1, 1 × 48 2 | - |
Linear | 128 | 1 × 48 | Feed-Forward 2 |
Dropout + ReLU | 0.4 | 1 × 128 | Feed-Forward 2 |
Linear | 32 | 1 × 128 | Feed-Forward 2 |
Dropout + ReLU | 0.4 | 1 × 32 | Feed-Forward 2 |
Linear | 16 | 1 × 32 | Feed-Forward 2 |
Dropout + ReLU | 0.4 | 1 × 16 | Feed-Forward 2 |
Linear | 1 | 1 × 16 | Feed-Forward 2 |
Models | Metrics | Prediction Length (Hours) | ||||||
---|---|---|---|---|---|---|---|---|
8 | 16 | 24 | 32 | 40 | 48 | Mean 1 | ||
Auto-Modal | nRMSE | 0.0363 | 0.0378 | 0.0379 | 0.0439 | 0.0308 | 0.0321 | 0.0365 |
nMBE | −0.0099 | 0.0162 | 0.0032 | 0.0054 | 0.0168 | −0.0014 | 0.0051 | |
nMAE | 0.1221 | 0.1086 | 0.1057 | 0.1121 | 0.1100 | 0.1124 | 0.1118 | |
MAPE | 0.1425 | 0.1299 | 0.1286 | 0.1326 | 0.1351 | 0.1332 | 0.1337 | |
LSTM | nRMSE | 0.0382 | 0.0398 | 0.0430 | 0.0543 | 0.0344 | 0.0345 | 0.0407 |
nMBE | −0.0385 | −0.0074 | −0.0323 | −0.0241 | −0.0150 | −0.0118 | −0.0215 | |
nMAE | 0.1360 | 0.1173 | 0.1186 | 0.1479 | 0.1219 | 0.1231 | 0.1275 | |
MAPE | 0.1540 | 0.1404 | 0.1380 | 0.1782 | 0.1475 | 0.1485 | 0.1511 | |
Transformer | nRMSE | 0.0390 | 0.0396 | 0.0396 | 0.0452 | 0.0313 | 0.0336 | 0.0381 |
nMBE | −0.0311 | −0.0201 | −0.0178 | −0.0125 | −0.0100 | −0.0241 | −0.0193 | |
nMAE | 0.1372 | 0.1151 | 0.1107 | 0.1161 | 0.1098 | 0.1226 | 0.1186 | |
MAPE | 0.1573 | 0.1342 | 0.1328 | 0.1348 | 0.1359 | 0.1403 | 0.1392 |
Models | Metrics | Prediction Length (Hours) | ||||||
---|---|---|---|---|---|---|---|---|
8 | 16 | 24 | 32 | 40 | 48 | Mean 1 | ||
Auto-Modal | nRMSE | 0.0363 | 0.0378 | 0.0379 | 0.0439 | 0.0308 | 0.0321 | 0.0365 |
nMBE | −0.0099 | 0.0162 | 0.0032 | 0.0054 | 0.0168 | −0.0014 | 0.0051 | |
nMAE | 0.1221 | 0.1086 | 0.1057 | 0.1121 | 0.1100 | 0.1124 | 0.1118 | |
MAPE | 0.1425 | 0.1299 | 0.1286 | 0.1326 | 0.1351 | 0.1332 | 0.1337 | |
TCN | nRMSE | 0.0416 | 0.0499 | 0.0553 | 0.0496 | 0.0386 | 0.0364 | 0.0452 |
nMBE | −0.0034 | −0.0028 | −0.0269 | −0.0247 | −0.0101 | −0.0243 | −0.0154 | |
nMAE | 0.1452 | 0.1512 | 0.1559 | 0.1318 | 0.1382 | 0.1330 | 0.1426 | |
MAPE | 0.1694 | 0.1848 | 0.1866 | 0.1583 | 0.1702 | 0.1593 | 0.1714 | |
WRF-CMAQ | nRMSE | 0.1201 | 0.1388 | 0.1455 | 0.1507 | 0.1132 | 0.1122 | 0.1301 |
nMBE | −0.1606 | −0.1565 | −0.1722 | −0.1689 | −0.1844 | −0.1676 | −0.1684 | |
nMAE | 0.4389 | 0.4180 | 0.4136 | 0.4216 | 0.4184 | 0.4176 | 0.4214 | |
MAPE | 0.4433 | 0.4213 | 0.4130 | 0.4229 | 0.4178 | 0.4132 | 0.4219 | |
Informer | nRMSE | 0.0371 | 0.0392 | 0.0383 | 0.0457 | 0.0316 | 0.0331 | 0.0375 |
nMBE | −0.0262 | −0.0249 | −0.0230 | −0.0306 | −0.0302 | −0.0237 | −0.0264 | |
nMAE | 0.1298 | 0.1132 | 0.1082 | 0.1174 | 0.1148 | 0.1191 | 0.1171 | |
MAPE | 0.1513 | 0.1299 | 0.1261 | 0.1357 | 0.1382 | 0.1374 | 0.1365 | |
Persistence | nRMSE | 0.0805 | 0.0892 | 0.0882 | 0.0967 | 0.0969 | 0.0959 | 0.0912 |
nMBE | 0.0001 | −0.0002 | −0.0006 | −0.0005 | −0.0010 | −0.0016 | −0.0006 | |
nMAE | 0.2908 | 0.3200 | 0.3018 | 0.3529 | 0.3576 | 0.3425 | 0.3276 | |
MAPE | 0.3418 | 0.3766 | 0.3458 | 0.4210 | 0.4331 | 0.4063 | 0.3874 |
Models | Prediction Length (Hours) | ||||||
---|---|---|---|---|---|---|---|
8 | 16 | 24 | 32 | 40 | 48 | Mean 1 | |
Auto-Modal | 56.57% | 61.47% | 59.83% | 61.16% | 68.50% | 66.85% | 62.70% |
Informer | 54.80% | 60.60% | 59.96% | 59.80% | 67.74% | 65.82% | 61.77% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhu, T.; Li, Z.; Ni, C. Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention. Sensors 2022, 22, 6953. https://doi.org/10.3390/s22186953
Guo Y, Zhu T, Li Z, Ni C. Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention. Sensors. 2022; 22(18):6953. https://doi.org/10.3390/s22186953
Chicago/Turabian StyleGuo, Yiren, Tingting Zhu, Zhenye Li, and Chao Ni. 2022. "Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention" Sensors 22, no. 18: 6953. https://doi.org/10.3390/s22186953
APA StyleGuo, Y., Zhu, T., Li, Z., & Ni, C. (2022). Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention. Sensors, 22(18), 6953. https://doi.org/10.3390/s22186953