Threshold-Based User-Assisted Cooperative Relaying in Beamspace Massive MIMO NOMA Systems
Abstract
:1. Introduction
1.1. Related Works
1.2. Contributions
- We propose threshold-based user-assisted cooperative relaying in beamspace mMIMO NOMA for mmWave communications to improve the overall system and cell-edge MUT performance with low end-to-end latency. To reduce inter- and intra-beam interferences, a zero forcing (ZF) precoder and iterative power allocation are used.
- We compare the performance of this system, CRS beamspace mMIMO NOMA [3], beamspace MIMO-NOMA [4], and MIMO-OMA in a delay-intolerant scenario (A delay-intolerant system refers to a system in which symbols must be received within a specified time frame.). By selecting relaying MUTs based on the signal-to-interference plus noise ratio (SINR) threshold, the cell-edge MUT can receive its symbols in only two transmission phases while maximizing the received SINR.
- We then derive an analytic expression for the outage probability at the cell-edge MUT. This allows us to analyze the proposed system in terms of outage probability and demonstrate its reliability.
- Numerical results revealed that the proposed system achieves superior performance in terms of spectral and energy efficiency. Moreover, the proposed system showed superior performance to CRS beamspace mMIMO NOMA [3], beamspace MIMO-NOMA [4], and MIMO-OMA systems in terms of the outage probability of the cell-edge MUT.
2. System Model
2.1. Network Architecture
- Digital precoder: used to perform the digital baseband signal processing.
2.2. Signal Model
3. Proposed Threshold-Based Cooperative Relaying
3.1. Spectral Efficiency
Algorithm 1: Threshold-based user-assisted relay selection |
|
3.2. Outage Probability
4. Simulation Results
- A CRS beamspace mMIMO NOMA system, which integrates a beamspace mMIMO system with NOMA and a multi-hop CRS [3].
- A beamspace MIMO-NOMA system, which integrates NOMA and a beamspace MIMO system to serve [4] MUTs.
- A MIMO-OMA system [49] with , in which OMA is performed for IUs within the same beam, and orthogonal frequency resources are allocated for MUTs within the beam.
- The proposed threshold-based user-assisted CRS beamspace mMIMO NOMA system, which integrates beamspace mMIMO NOMA and a threshold-based user-assisted CRS.
4.1. Spectral Efficiency
4.2. Energy Efficiency
4.3. Outage Probability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGN | Additive Gaussian noise |
GDPC | Generalize dirty paper coding |
C-MUT | Cell-edge mobile user terminal |
MRC | Maximal ratio combining |
SC | Selection combining |
QR | Quasi-static Rayleigh fading |
LS | Large-scale path loss |
References
- Zhu, L.; Xiao, Z.; Xia, X.G.; Wu, D.O. Millimeter-wave communications with non-orthogonal multiple access for B5G/6G. IEEE Access 2019, 7, 116123–116132. [Google Scholar] [CrossRef]
- Jiao, R.; Dai, L. On the max-min fairness of beamspace MIMO-NOMA. IEEE Trans. Signal Process. 2020, 68, 4919–4932. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, M.L. User assisted cooperative relaying in beamspace massive MIMO NOMA based systems for millimeter wave communications. China Commun. 2019, 16, 103–113. [Google Scholar] [CrossRef]
- Wang, B.; Dai, L.; Wang, Z.; Ge, N.; Zhou, S. Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE J. Sel. Areas Commun. 2017, 35, 2370–2382. [Google Scholar] [CrossRef]
- Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 2013, 61, 1436–1449. [Google Scholar]
- Gao, X.; Dai, L.; Han, S.; Chih-Lin, I.; Heath, R.W. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J. Sel. Areas Commun. 2016, 34, 998–1009. [Google Scholar] [CrossRef]
- Wang, B.; Dai, L.; Gao, X.; Hanzo, L. Beamspace MIMO-NOMA for millimeter-wave communications using lens antenna arrays. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [Google Scholar]
- Sayeed, A.; Brady, J. Beamspace MIMO for high-dimensional multiuser communication at millimeter-wave frequencies. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013; pp. 3679–3684. [Google Scholar]
- Amadori, P.V.; Masouros, C. Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection. IEEE Trans. Commun. 2015, 63, 2212–2223. [Google Scholar] [CrossRef]
- Pal, R.; Chaitanya, A.K.; Srinivas, K.V. Low-complexity beam selection algorithms for millimeter wave beamspace MIMO systems. IEEE Commun. Lett. 2019, 23, 768–771. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Chen, Z.; Wang, Z.; Zhang, Z. Near-optimal beam selection for beamspace mmWave massive MIMO systems. IEEE Commun. Lett. 2016, 20, 1054–1057. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Sayeed, A.M. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications. IEEE Commun. Mag. 2018, 56, 211–217. [Google Scholar] [CrossRef]
- Tang, S.; Ma, Z.; Xiao, M.; Hao, L. Hybrid transceiver design for beamspace MIMO-NOMA in code-domain for mmWave communication using lens antenna array. IEEE J. Sel. Areas Commun. 2020, 38, 2118–2127. [Google Scholar] [CrossRef]
- Alimo, D.; Saito, M. Beam selection for mm-wave massive MIMO systems using ACO & combined digital precoding under hybrid transceiver architecture. IEICE Commun. Express 2020, 9, 170–175. [Google Scholar]
- Zeng, Y.; Zhang, R. Millimeter wave MIMO with lens antenna array: A new path division multiplexing paradigm. IEEE Trans. Commun. 2016, 64, 1557–1571. [Google Scholar] [CrossRef]
- Brady, J.; Behdad, N.; Sayeed, A.M. Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements. IEEE Trans. Antennas Propag. 2013, 61, 3814–3827. [Google Scholar] [CrossRef]
- Qian, L.; Wu, Y.; Yu, N.; Jiang, F.; Zhou, H.; Quek, T.Q.S. Learning driven NOMA assisted vehicular edge computing via underlay spectrum sharing. IEEE Trans. Veh. Technol. 2021, 70, 977–992. [Google Scholar] [CrossRef]
- Sabuj, S.R.; Asiedu, D.K.P.; Lee, K.J.; Jo, H.S. Delay optimization in mobile edge computing: Cognitive UAV-assisted eMBB and mMTC services. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1019–1033. [Google Scholar] [CrossRef]
- Do, T.N.; da Costa, D.B.; Duong, T.Q.; An, B. Improving the performance of cell-edge users in NOMA systems using cooperative relaying. IEEE Trans. Commun. 2018, 66, 1883–1901. [Google Scholar] [CrossRef]
- Cui, J.; Liu, Y.; Ding, Z.; Fan, P.; Nallanathan, A. Optimal user scheduling and power allocation for millimeter wave NOMA systems. IEEE Trans. Wirel. Commun. 2017, 17, 1502–1517. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, J.; Xiao, Z.; Cao, X.; Wu, D.O.; Xia, X.G. Millimeter-wave NOMA with user grouping, power allocation and hybrid beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5065–5079. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, L.; Guo, J.; Ng, D.W.K.; Yuan, J. Multi-beam NOMA for hybrid mmWave systems. IEEE Trans. Commun. 2018, 67, 1705–1719. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Peng, M.; Chen, S. Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer. IEEE J. Sel. Areas Commun. 2018, 37, 131–141. [Google Scholar] [CrossRef]
- Gandotra, P.; Jha, R.K. Device-to-device communication in cellular networks: A survey. J. Netw. Comput. Appl. 2016, 71, 99–117. [Google Scholar] [CrossRef] [Green Version]
- Elkotby, H.; Vu, M. Uplink user-assisted relaying in cellular networks. IEEE Trans. Wirel. Commun. 2015, 14, 5468–5483. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.H. Performance analysis and resource allocation for cooperative D2D communication in cellular networks with multiple D2D pairs. IEEE Commun. Lett. 2019, 23, 909–912. [Google Scholar] [CrossRef]
- Wang, S.; Guo, W.; Zhou, Z.; Wu, Y.; Chu, X. Outage probability for multi-hop D2D communications with shortest path routing. IEEE Commun. Lett. 2015, 19, 1997–2000. [Google Scholar] [CrossRef]
- Odeh, N.; Abolhasan, M.; Safaei, F. Low complexity interference aware distributed resource allocation for multi-cell OFDMA cooperative relay networks. In Proceedings of the IEEE Wireless Communications and Networking Conference, WCNC, Sydney, Australia, 18–21 April 2010. [Google Scholar]
- Vanganuru, K.; Puzio, M.; Sternberg, G.; Shah, K.; Kaur, S. Uplink system capacity of a cellular network with cooperative mobile relay. In Proceedings of the Wireless Telecommunications Symposium, New York, NY, USA, 13–15 April 2011. [Google Scholar]
- Liau, Q.Y.; Leow, C.Y. Successive user relaying in cooperative NOMA system. IEEE Wirel. Commun. Lett. 2019, 8, 921–924. [Google Scholar] [CrossRef]
- Kara, F.; Kaya, H. Threshold-Based Selective Cooperative-NOMA. IEEE Commun. Lett. 2019, 23, 1263–1266. [Google Scholar] [CrossRef]
- Kara, F.; Kaya, H. Threshold-Based Selective Cooperative NOMA: Capacity/Outage Analysis and a Joint Power Allocation-Threshold Selection Optimization. IEEE Commun. Lett. 2020, 24, 1929–1933. [Google Scholar] [CrossRef]
- Le, V.A.; Pitaval, R.A.; Blostein, S.; Riihonen, T.; Wichman, R. Green cooperative communication using threshold-based relay selection protocols. In Proceedings of the 2010 International Conference on Green Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 521–526. [Google Scholar]
- Xie, X.; Liu, J.; Huang, J.; Zhao, S. Ergodic capacity and outage performance analysis of uplink full-duplex cooperative NOMA system. IEEE Access 2020, 8, 164786–164794. [Google Scholar] [CrossRef]
- Jiao, R.; Dai, L.; Zhang, J.; MacKenzie, R.; Hao, M. On the performance of NOMA-based cooperative relaying systems over Rician fading channels. IEEE Trans. Veh. Technol. 2017, 66, 11409–11413. [Google Scholar] [CrossRef]
- Abbasi, O.; Ebrahimi, A.; Mokari, N. NOMA inspired cooperative relaying system using an AF relay. IEEE Wirel. Commun. Lett. 2019, 8, 261–264. [Google Scholar] [CrossRef]
- Huang, C.; Chen, G.; Gong, Y.; Xu, P.; Han, Z.; Chambers, J.A. Buffer-Aided Relay Selection for Cooperative Hybrid NOMA/OMA Networks with Asynchronous Deep Reinforcement Learning. IEEE J. Sel. Areas Commun. 2021, 39, 2514–2525. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, I.H. Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Commun. Lett. 2015, 19, 1949–1952. [Google Scholar] [CrossRef]
- El-Zahr, S.; Abou-Rjeily, C. Threshold based relay selection for buffer-aided cooperative relaying systems. IEEE Trans. Wirel. Commun. 2021, 20, 6210–6223. [Google Scholar] [CrossRef]
- Zaidi, A.; Vandendorpe, L. Rate regions for the partially-cooperative relay broadcast channel with non-causal side information. IEEE Int. Symp. Inf. Theory—Proc. 2007, 1, 1246–1250. [Google Scholar]
- Zaidi, A.; Vandendorpe, L.; Duhamel, P. Lower bounds on the capacity regions of the relay channel and the cooperative relay-broadcast channel with non-causal side information. In Proceedings of the 2007 IEEE International Conference on Communications, Glasgow, UK, 24–28 June 2007; pp. 6005–6011. [Google Scholar]
- Yue, X.; Liu, Y.; Kang, S.; Nallanathan, A.; Ding, Z. Exploiting Full/Half-Duplex User Relaying in NOMA Systems. IEEE Trans. Commun. 2018, 66, 560–575. [Google Scholar] [CrossRef]
- Guo, N.; Ge, J.; Bu, Q.; Zhang, C. Multi-User Cooperative Non-Orthogonal Multiple Access Scheme with Hybrid Full/Half-Duplex User-Assisted Relaying. IEEE Access 2019, 7, 39207–39226. [Google Scholar] [CrossRef]
- Kundu, C.; Ngatched, T.M.N.; Dobre, O.A. Relay selection to improve secrecy in cooperative threshold decode-and-forward relaying. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Xiao, M.; Mumtaz, S.; Huang, Y.; Dai, L.; Li, Y.; Matthaiou, M.; Karagiannidis, G.K.; Björnson, E.; Yang, K.; Chih-Lin, I. Millimeter wave communications for future mobile networks. IEEE J. Sel. Areas Commun. 2017, 35, 1909–1935. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Han, S.; Chih-Lin, I.; Wang, X. Reliable Beamspace Channel Estimation for Millimeter-Wave Massive MIMO Systems with Lens Antenna Array. IEEE Trans. Wirel. Commun. 2017, 16, 6010–6021. [Google Scholar] [CrossRef]
- Nazzal, M.; Aygul, M.A.; Gorcin, A.; Arslan, H. Dictionary learning-based beamspace channel estimation in millimeter-wave massive MIMO systems with a lens antenna array. In Proceedings of the 2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019, Tangier, Morocco, 24–28 June 2019; pp. 20–25. [Google Scholar]
- Hossain, E.; Kim, D.I.; Bhargava, V.K. Cooperative Cellular Wireless Networks; Cambridge University Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Liu, Y.; Pan, G.; Zhang, H.; Song, M. On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Access 2016, 4, 2123–2129. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Lee, K. Coverage and cell-edge sum-rate analysis of mmWave massive MIMO systems with ORP schemes and MMSE receivers. IEEE Trans. Signal Process. 2018, 66, 5349–5363. [Google Scholar] [CrossRef]
[36] | [43] | [37] | [40] | [41] | [32] | Current work | |
---|---|---|---|---|---|---|---|
Channel | AGN | QR + LS | QR | Discrete AGN | AGN | mmWave | mmWave |
Uplink | |||||||
Downlink | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
D2D | |||||||
Dedicated relay | ✓ | ✓ | Partial | Partial | |||
User-assisted CRS | ✓ | ✓ | ✓ | ||||
Duplex mode | Half | Full/Half | Half | Half | Half | Half | Half |
Decode-and-forw. | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Amplify-and-forw. | ✓ | ||||||
Multi-hop | ✓ | ||||||
Multi-relay | ✓ | ✓ | ✓ | per beam | per beam | ||
Single-relay | ✓ | ✓ | |||||
Destination | 1 | 2 | 2 | 1 | 1 | 1 per beam | 1 per beam |
Combining | 2 MRC | SC | MRC | ||||
SIC | 2 | ✓ | ✓ | Relay | Relay | Relay | Relay & C-MUT |
Threshold-based | ✓ | ||||||
Buffer-aided | ✓ | ||||||
Outage probability | ✓ | ✓ | ✓ | ||||
Sum rate | Rate region | ✓ | ✓ | ||||
Energy efficiency | ✓ | ✓ | |||||
Throughput | ✓ | ✓ | ✓ | ||||
Ergodic capacity | ✓ | ✓ | |||||
Multiple access | NOMA | NOMA | NOMA/OMA | NOMA | NOMA | ||
Message splitting | ✓ | ||||||
Precoding | GDPC | ZF | ZF | ||||
Time slot | 2 | 2 + buffer delay | 2 | 2 | No. of MUTs | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimo, D.; Hamamura, M.; Sabuj, S.R. Threshold-Based User-Assisted Cooperative Relaying in Beamspace Massive MIMO NOMA Systems. Sensors 2022, 22, 7445. https://doi.org/10.3390/s22197445
Alimo D, Hamamura M, Sabuj SR. Threshold-Based User-Assisted Cooperative Relaying in Beamspace Massive MIMO NOMA Systems. Sensors. 2022; 22(19):7445. https://doi.org/10.3390/s22197445
Chicago/Turabian StyleAlimo, David, Masanori Hamamura, and Saifur Rahman Sabuj. 2022. "Threshold-Based User-Assisted Cooperative Relaying in Beamspace Massive MIMO NOMA Systems" Sensors 22, no. 19: 7445. https://doi.org/10.3390/s22197445
APA StyleAlimo, D., Hamamura, M., & Sabuj, S. R. (2022). Threshold-Based User-Assisted Cooperative Relaying in Beamspace Massive MIMO NOMA Systems. Sensors, 22(19), 7445. https://doi.org/10.3390/s22197445