EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning
Abstract
:1. Introduction
- To the best of the authors’ knowledge, this study is the first to use combined features of EEG-based FBC and fNIRS for workload estimation.
- This paper explores different linear and nonlinear FBC representations in the time and frequency domains with their associated effect on classification accuracy.
- This study reports the contribution of different regions to the classification accuracy of the two sensing modalities.
- Topographic and heat maps were used to reveal distinct areas where the greatest change occurred at different workload levels.
2. Materials and Methods
2.1. Dataset
2.2. Signal Preprocessing and Feature Extraction
2.2.1. fNIRS
2.2.2. EEG
2.3. Feature Selection and Fusion
2.4. Machine-Learning Classification
3. Results
3.1. Time Interval Selection
3.2. Machine-Learning Classification Performance
3.3. Visualisation
4. Discussion
4.1. EEG vs. fNIRS
4.2. Univariate vs. Multivariate Features
4.3. Independent vs. Hybrid Feature
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, E.W.; Potter, K.C.; Matzen, L.E.; Shepherd, J.F.; Preston, G.A.; Silva, C.T. A user study of visualization effectiveness using EEG and cognitive load. Comput. Graph. Forum 2011, 30, 791–800. [Google Scholar] [CrossRef]
- Bashivan, P.; Yeasin, M.; Bidelman, G.M. Single trial prediction of normal and excessive cognitive load through EEG feature fusion. In Proceedings of the 2015 IEEE Signal Processing in Medicine and Biology Symposium, Philadelphia, PA, USA, 1 December 2016. [Google Scholar]
- Zhang, J.; Li, S. A deep learning scheme for mental workload classification based on restricted Boltzmann machines. Cogn. Technol. Work 2017, 19, 607–631. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.J. Quantitative evaluation of task-induced neurological outcome after stroke. Brain Sci. 2021, 11, 900. [Google Scholar] [CrossRef]
- Hussain, I.; Hossain, A.; Jany, R.; Bari, A.; Uddin, M.; Raihan, A.; Kamal, M.; Ku, Y.; Kim, J. Quantitative Evaluation of EEG-Biomarkers for Prediction of Sleep Stages. Sensors 2022, 22, 3079. [Google Scholar] [CrossRef]
- Hussain, I.; Young, S.; Kim, C.H.; Benjamin, H.C.M.; Park, S.J. Quantifying physiological biomarkers of a microwave brain stimulation device. Sensors 2021, 21, 1896. [Google Scholar] [CrossRef] [PubMed]
- Kakkos, I.; Dimitrakopoulos, G.N.; Sun, Y.; Yuan, J.; Matsopoulos, G.K.; Bezerianos, A.; Sun, Y. EEG Fingerprints of Task-Independent Mental Workload Discrimination. IEEE J. Biomed. Health Inform. 2021, 25, 3824–3833. [Google Scholar] [CrossRef]
- Pfeifer, M.D.; Scholkmann, F.; Labruyère, R. Signal processing in functional near-infrared spectroscopy (fNIRS): Methodological differences lead to different statistical results. Front. Hum. Neurosci. 2018, 11, 641. [Google Scholar] [CrossRef] [Green Version]
- Kuanar, S.; Athitsos, V.; Pradhan, N.; Mishra, A.; Rao, K.R. Cognitive Analysis of Working Memory Load from Eeg, by a Deep Recurrent Neural Network. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 15–20 April 2018; Volume 2018, pp. 2576–2580. [Google Scholar]
- Aghajani, H.; Garbey, M.; Omurtag, A. Measuring mental workload with EEG+fNIRS. Front. Hum. Neurosci. 2017, 11, 359. [Google Scholar] [CrossRef] [Green Version]
- So, W.K.Y.; Wong, S.W.H.; Mak, J.N.; Chan, R.H.M. An evaluation of mental workload with frontal EEG. PLoS ONE 2017, 12, e0174949. [Google Scholar] [CrossRef] [Green Version]
- Maimon, N.B.; Molcho, L.; Intrator, N.; Lamy, D. Single-channel EEG features during n-back task correlate with working memory load. arXiv 2020, arXiv:2008.04987. [Google Scholar]
- Mühl, C.; Jeunet, C.; Lotte, F. EEG-based workload estimation across affective contexts. Front. Neurosci. 2014, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhao, Y.; Shan, X.; Wei, H.; Guo, Y.; Chen, L.; Erkoyuncu, J.A.; Sarrigiannis, P.G. Brain functional and effective connectivity based on electroencephalography recordings: A review. Hum. Brain Mapp. 2021, 43, 860–879. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Grajcar, K.; Shan, X.; Zhao, Y.; Zou, J.; Chen, L.; Li, Z.; Grunewald, R.; Zis, P.; De Marco, M.; et al. Using interictal seizure-free EEG data to recognise patients with epilepsy based on machine learning of brain functional connectivity. Biomed. Signal Process. Control 2021, 67, 102554. [Google Scholar] [CrossRef]
- Shan, X.; Huo, S.; Cao, J.; Yang, L.; Zou, J.; Chen, L.; Li, Z. Tracking non-stationary association of two electroencephalography signals using a Revised Hilbert-Huang Transformation. IEEE Trans. Neural Syst. Rehabil. Eng. Shan 2021, 29, 841–851. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.; Durongbhan, P.; Chen, L.; Liu, J.; Billings, S.A.; Zis, P.; Unwin, Z.C.; De Marco, M.; Venneri, A.; et al. Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based on EEG Recordings with the Application on the Diagnosis of Alzheimer’s Disease. IEEE Trans. Med. Imaging 2020, 39, 1571–1581. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.; Rabiul Islam, S. Classification of FNIRS Using Wigner-ville Distribution and CNN. Int. J. Image, Graph. Signal Process. 2021, 13, 1–13. [Google Scholar] [CrossRef]
- Alhudhaif, A. An effective classification framework for brain-computer interface system design based on combining of fNIRS and EEG signals. PeerJ Comput. Sci. 2021, 7, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.W. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 2020, 1464, 5. [Google Scholar] [CrossRef] [PubMed]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Müller, N.G. Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in exercise--cognition science: A systematic, methodology-focused review. J. Clin. Med. 2018, 7, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herff, C.; Heger, D.; Fortmann, O.; Hennrich, J.; Putze, F.; Schultz, T. Mental workload during n-back task-quantified in the prefrontal cortex using fNIRS. Front. Hum. Neurosci. 2014, 7, 935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandrick, K.; Peysakhovich, V.; Rémy, F.; Lepron, E.; Causse, M. Neural and psychophysiological correlates of human performance under stress and high mental workload. Biol. Psychol. 2016, 121, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Saadati, M.; Nelson, J.; Ayaz, H. Mental Workload Classification from Spatial Representation of FNIRS Recordings Using Convolutional Neural Networks. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, Pittsburgh, PA, USA, 13–16 October 2019. [Google Scholar]
- Lim, L.G.; Ung, W.C.; Chan, Y.L.; Lu, C.K.; Sutoko, S.; Funane, T.; Kiguchi, M.; Tang, T.B. A unified analytical framework with multiple fNIRS features for mental workload assessment in the prefrontal cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2367–2376. [Google Scholar] [CrossRef] [PubMed]
- Putze, F.; Herff, C.; Tremmel, C.; Schultz, T.; Krusienski, D.J. Decoding Mental Workload in Virtual Environments: A fNIRS Study using an Immersive n-back Task. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 23–27 July 2019; pp. 3103–3106. [Google Scholar]
- Asgher, U.; Ahmad, R.; Naseer, N.; Ayaz, Y.; Khan, M.J.; Amjad, M.K. Assessment and Classification of Mental Workload in the Prefrontal Cortex (PFC) Using Fixed-Value Modified Beer-Lambert Law. IEEE Access 2019, 7, 143250–143262. [Google Scholar] [CrossRef]
- Liu, Y.; Ayaz, H.; Shewokis, P.A. Mental workload classification with concurrent electroencephalography and functional near-infrared spectroscopy. Brain-Comput. Interfaces 2016, 4, 175–185. [Google Scholar] [CrossRef]
- Saadati, M.; Nelson, J.; Ayaz, H. Multimodal fNIRS-EEG classification using deep learning algorithms for brain-computer interfaces purposes. Adv. Intell. Syst. Comput. 2020, 953, 209–220. [Google Scholar]
- Shin, J.; Von Lühmann, A.; Kim, D.-W.; Mehnert, J.; Hwang, H.-J.; Müller, K.-R. Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. Sci. Data 2018, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Blankertz, B.; Tangermann, M.; Vidaurre, C.; Fazli, S.; Sannelli, C.; Haufe, S.; Maeder, C.; Ramsey, L.E.; Sturm, I.; Curio, G.; et al. The Berlin brain--computer interface: Non-medical uses of BCI technology. Front. Neurosci. 2010, 4, 198. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.J.; Hong, M.J.; Hong, K.-S. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Front. Hum. Neurosci. 2014, 8, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouwer, A.M.; Hogervorst, M.A.; Van Erp, J.B.F.; Heffelaar, T.; Zimmerman, P.H.; Oostenveld, R. Estimating workload using EEG spectral power and ERPs in the n-back task. J. Neural Eng. 2012, 9, 045008. [Google Scholar] [CrossRef]
- Mormann, F.; Lehnertz, K.; David, P.; Elger, C.E. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D Nonlinear Phenom. 2000, 144, 358–369. [Google Scholar] [CrossRef]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyrzowski, J.; Sieminski, M.; Sarnowska, A.; Jedrzejczak, J.; Nyka, W.M. Interval analysis of interictal EEG: Pathology of the alpha rhythm in focal epilepsy. Sci. Rep. 2015, 5, 16230. [Google Scholar] [CrossRef] [PubMed]
- Blinowska, K.J.; Rakowski, F.; Kaminski, M.; De Vico Fallani, F.; Del Percio, C.; Lizio, R.; Babiloni, C. Functional and effective brain connectivity for discrimination between Alzheimer’s patients and healthy individuals: A study on resting state EEG rhythms. Clin. Neurophysiol. 2017, 128, 667–680. [Google Scholar] [CrossRef]
- Nguyen, T.; Ahn, S.; Jang, H.; Jun, S.C.; Kim, J.G. Utilization of a combined EEG/NIRS system to predict driver drowsiness. Sci. Rep. 2017, 7, 43933. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.; Cao, Y.; Jiang, J.; Yang, J.; Huang, M.; Li, Q.; Jiang, C.; Jiao, X. Optimized EEG-fNIRS Based Mental Workload Detection Method for Practical Applications. 2021. Available online: https://assets.researchsquare.com/files/rs-683529/v1_covered.pdf?c=1631874746 (accessed on 30 August 2022).
- Han, W.; Gao, L.; Wu, J.; Pelowski, M.; Liu, T. Assessing the brain ‘on the line’: An ecologically-valid assessment of the impact of repetitive assembly line work on hemodynamic response and fine motor control using fNIRS. Brain Cogn. 2019, 136, 103613. [Google Scholar] [CrossRef] [PubMed]
- Midha, S.; Maior, H.A.; Wilson, M.L.; Sharples, S. Measuring Mental Workload Variations in Office Work Tasks using fNIRS. Int. J. Hum. Comput. Stud. 2021, 147, 102580. [Google Scholar] [CrossRef]
- Karran, A.J.; Demazure, T.; Leger, P.M.; Labonte-LeMoyne, E.; Senecal, S.; Fredette, M.; Babin, G. Toward a Hybrid Passive BCI for the Modulation of Sustained Attention Using EEG and fNIRS. Front. Hum. Neurosci. 2019, 13, 393. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Wang, H.; Bezerianos, A.; Li, J. EEG-Based Multiclass Workload Identification Using Feature Fusion and Selection. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
Specification | fNIRS | EEG/MEG | fMRI | PET |
---|---|---|---|---|
Spatial resolution | 2–3 cm | 5–9 cm | 0.3 mm voxels | 4 mm |
Penetration depth | Brain cortex | Brain cortex for EEG/deep structures for MEG | Whole head | Whole head |
Temporal sampling rates | ≤10 Hz | >1000 Hz | 1–3 Hz | <0.1 Hz |
Range of possible tasks | Enormous | Limited | Limited | Limited |
Robustness to motion | Very good | Limited | Limited | Limited |
Range of possible participants | Everyone | Everyone | Limited, can be challenging for children/patients | Limited |
Sounds | Silent | Silent | Very noisy | Silent |
Portability | Yes, for portable systems | Yes, for portable EEG systems | None | None |
Cost | Low | Low for EEG; high for MEG | High | High |
EEG | fNIRS | EEG + fNIRS | ||||
---|---|---|---|---|---|---|
PSD | FBC | HbO | HbR | |||
0-back vs. 2-back | Delta | 66% | 67% | 62% | 68% | 72% |
Theta | 68% | 73% | 75% | |||
Alpha | 70% | 74% | 77% |
EEG | fNIRS | EEG + fNIRS | ||||
---|---|---|---|---|---|---|
PSD | FBC | HBO | HBR | |||
0-back vs. 3-back | Delta | 65% | 63% | 62% | 72% | 74% |
Theta | 69% | 72% | 75% | |||
Alpha | 71% | 77% | 83% |
EEG | fNIRS | EEG + fNIRS | ||||
---|---|---|---|---|---|---|
PSD | FBC | HBO | HBR | |||
2-back vs. 3-back | Delta | 52% | 60% | 60% | 61% | 57% |
Theta | 56% | 61% | 58% | |||
Alpha | 55% | 62% | 59% |
Alpha Hybrid Features | Accuracy | Specificity | Sensitivity | AUC |
---|---|---|---|---|
0-back vs. 2-back | 77% | 79% | 76% | 0.8332 |
0-back vs. 3-back | 83% | 84% | 80% | 0.9501 |
2-back vs. 3-back | 59% | 57% | 63% | 0.6721 |
Reference | Study Setting | Classifier | Accuracy |
---|---|---|---|
Liu et al. [28] | 0-, 1-, 2- N-back | LDA | 64.4% (EEG) 55.6% (fNIRS) 68.1% (EEG+fNIRS) |
Aghajani et al. [10] | 0-, 1-, 2-, 3- N-back | SVM | 85.9% (EEG) 74.8% (fNIRS) 90.9% (EEG+fNIRS) |
Nguyen et al. [38] | Simulated driving system | FLDA | 73.7% (EEG) 70.5% (fNIRS) 79.2% (EEG+fNIRS) |
Saadati et al. [29] | N-back DSR Word generation LHand vs. RHand | DNN, SVM | 67.0% (EEG-DNN) 80.0% (fNIRS-DNN) 87.0% (EEG+fNIRS-DNN) 82% (EEG+fNIRS-SVM) |
Chu et al. [39] | Mental workload | SVM, RF, DT | 55.4% (EEG-RF) 69.2% (fNIRS-RF) 78.3% (EEG+fNIRS-RF) |
Proposed study | 0-, 2-, 3-back | SVM | 77% (0-back vs. 2-back) 83% (0-back vs. 3-back) 59% (2-back vs. 3-back) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Garro, E.M.; Zhao, Y. EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning. Sensors 2022, 22, 7623. https://doi.org/10.3390/s22197623
Cao J, Garro EM, Zhao Y. EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning. Sensors. 2022; 22(19):7623. https://doi.org/10.3390/s22197623
Chicago/Turabian StyleCao, Jun, Enara Martin Garro, and Yifan Zhao. 2022. "EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning" Sensors 22, no. 19: 7623. https://doi.org/10.3390/s22197623
APA StyleCao, J., Garro, E. M., & Zhao, Y. (2022). EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning. Sensors, 22(19), 7623. https://doi.org/10.3390/s22197623