Electrotactile Communication via Matrix Electrode Placed on the Torso Using Fast Calibration, and Static vs. Dynamic Encoding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hardware Ccmponents
2.2. Protocol
2.2.1. Subjects
2.2.2. Setup
2.3. Movement Patterns
2.4. Data Analysis
3. Results
3.1. Spatial versus Movement Discrimination
3.2. Calibration
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chouvardas, V.G.; Miliou, A.N.; Hatalis, M.K. Tactile Displays: Overview and Recent Advances. Displays 2008, 29, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Szeto, A.Y.J.; Saunders, F.A. Electrocutaneous Stimulation for Sensory Communication in Rehabilitation Engineering. IEEE Trans. Biomed. Eng. 1982, BME-29, 300–308. [Google Scholar] [CrossRef] [PubMed]
- D’Alonzo, M.; Dosen, S.; Cipriani, C.; Farina, D. HyVE: Hybrid Vibro-Electrotactile Stimulation for Sensory Feedback and Substitution in Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Dosen, S.; Markovic, M.; Strbac, M.; Belic, M.; Kojic, V.; Bijelic, G.; Keller, T.; Farina, D. Multichannel Electrotactile Feedback With Spatial and Mixed Coding for Closed-Loop Control of Grasping Force in Hand Prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.W.; Kuhl, P.K.; Edmonds, A.E.; Gray, G.P. Investigating the MESA (Multipoint Electrotactile Speech Aid): The Transmission of Segmental Features of Speech. J. Acoust. Soc. Am. 1987, 63, 246. [Google Scholar] [CrossRef] [PubMed]
- Sherrick, C.E. Basic and Applied Research on Tactile Aids for Deaf People: Progress and Prospects. J. Acoust. Soc. Am. 1984, 75, 1325–1342. [Google Scholar] [CrossRef]
- Kajimoto, H.; Kawakami, N.; Tachi, S.; Inami, M. SmartTouch: Electric Skin to Touch the Untouchable | IEEE Journals & Magazine | IEEE Xplore. IEEE Comput. Graph. Appl. 2004, 24, 36–43. [Google Scholar] [PubMed]
- Collins, C.C. On Mobility Aids for the Blind. In Electronic Spatial Sensing for the Blind: Contributions from Perception, Rehabilitation, and Computer Vision; Warren, D.H., Strelow, E.R., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1985; pp. 35–64. ISBN 978-94-017-1400-6. [Google Scholar]
- Li, K.; Boyd, P.; Zhou, Y.; Ju, Z.; Liu, H. Electrotactile Feedback in a Virtual Hand Rehabilitation Platform: Evaluation and Implementation. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1556–1565. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.; Chen, S.; Meng, J.; Yao, L.; Sheng, X.; Jia, J.; Farina, D.; Zhu, X. Tactile Stimulation Improves Sensorimotor Rhythm-Based BCI Performance in Stroke Patients. IEEE Trans. Biomed. Eng. 2018, 66, 1987–1995. [Google Scholar] [CrossRef] [PubMed]
- Abbass, Y.; Seminara, L.; Saleh, M.; Valle, M. Novel Wearable Tactile Feedback System for Post-Stroke Rehabilitation. In Proceedings of the 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), Berlin, Germany, 7–9 October 2021; pp. 1–6. [Google Scholar]
- Antfolk, C.; D’Alonzo, M.; Rosén, B.; Lundborg, G.; Sebelius, F.; Cipriani, C. Sensory Feedback in Upper Limb Prosthetics. Expert Rev. Med. Devices 2013, 10, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Wentink, E.C.; Talsma-Kerkdijk, E.J.; Rietman, H.S.; Veltink, P. Feasibility of Error-Based Electrotactile and Auditive Feedback in Prosthetic Walking. Prosthet. Orthot. Int. 2015, 39, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Pamungkas, D.; Ward, K. Electro-Tactile Feedback for Tele-Operation of a Mobile Robot. In Proceedings of the Australlasian Conference on Robotics and Automation, Sydney, Australia, 2–4 December 2013; ASTL: Sydney, Australia, 2013; pp. 1–7. [Google Scholar]
- Pamungkas, D.; Ward, K. Electro-Tactile Feedback System to Enhance Virtual Reality Experience. Int. J. Comput. Theory Eng. 2016, 8, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Project–SIXTHSENSE. Available online: https://sixthsenseproject.eu/about/ (accessed on 17 May 2022).
- Akhtar, A.; Sombeck, J.; Boyce, B.; Bretl, T. Controlling Sensation Intensity for Electrotactile Stimulation in Human-Machine Interfaces. Sci. Robot. 2018, 3, eaap9770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens-Fripp, B.; Mutlu, R.; Alici, G. A Comparison Between Separated Electrodes and Concentric Electrodes for Electrotactile Stimulation. IEEE Trans. Med. Robot. Bionics 2021, 3, 241–252. [Google Scholar] [CrossRef]
- Gregory, J.; Xi, N.; Shen, Y. Towards On-Line Fingertip Bio-Impedance Identification for Enhancement of Electro-Tactile Rendering. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 3685–3690. [Google Scholar]
- Jung, Y.H.; Kim, J.-H.; Rogers, J.A. Skin-Integrated Vibrohaptic Interfaces for Virtual and Augmented Reality. Adv. Funct. Mater. 2021, 31, 2008805. [Google Scholar] [CrossRef]
- Choi, S.; Kuchenbecker, K.J. Vibrotactile Display: Perception, Technology, and Applications. Proc. IEEE 2013, 101, 2093–2104. [Google Scholar] [CrossRef]
- Blum, J.R.; Frissen, I.; Cooperstock, J.R. Improving Haptic Feedback on Wearable Devices through Accelerometer Measurements. In Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology, Charlotte, NC USA, 11–15 November 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 31–36. [Google Scholar]
- Chapman, C.E.; Zompa, I.C.; Williams, S.R.; Shenasa, J.; Jiang, W. Factors Influencing the Perception of Tactile Stimuli during Movement. In Somesthesis and the Neurobiology of the Somatosensory Cortex; Franzén, O., Johansson, R., Terenius, L., Eds.; Advances in Life Sciences; Birkhäuser: Basel, Switzerland, 1996; pp. 307–320. ISBN 978-3-0348-9016-8. [Google Scholar]
- Pakkanen, T.; Lylykangas, J.; Raisamo, J.; Raisamo, R.; Salminen, K.; Rantala, J.; Surakka, V. Perception of Low-Amplitude Haptic Stimuli When Biking. In Proceedings of the 10th International Conference on Multimodal Interfaces, Chania, Greece, 20–22 October 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 281–284. [Google Scholar]
- NGFR Integration Handbook | Homeland Security. Available online: https://www.dhs.gov/science-and-technology/ngfr/handbook (accessed on 3 October 2022).
- Mortimer, B.J.P.; Elliott, L.R. Identifying Errors in Tactile Displays and Best Practice Usage Guidelines. In Advances in Intelligent Systems and Computing, Proceedings of the Advances in Human Factors in Robots and Unmanned Systems, Los Angeles, CA, USA, 17–21 July 2017; Chen, J., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 226–235. [Google Scholar]
- Dastgeer, G.; Afzal, A.M.; Aziz, J.; Hussain, S.; Jaffery, S.H.A.; Kim, D.; Imran, M.; Assiri, M.A. Flexible Memory Device Composed of Metal-Oxide and Two-Dimensional Material (SnO2/WTe2) Exhibiting Stable Resistive Switching. Materials 2021, 14, 7535. [Google Scholar] [CrossRef]
- Dastgeer, G.; Shahzad, Z.M.; Chae, H.; Kim, Y.H.; Ko, B.M.; Eom, J. Bipolar Junction Transistor Exhibiting Excellent Output Characteristics with a Prompt Response against the Selective Protein. Adv. Funct. Mater. 2022, 32, 2204781. [Google Scholar] [CrossRef]
- Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials 2019, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Isaković, M.; Malešević, J.; Keller, T.; Kostić, M.; Štrbac, M. Optimization of Semiautomated Calibration Algorithm of Multichannel Electrotactile Feedback for Myoelectric Hand Prosthesis. Appl. Bionics Biomech. 2019, 2019, e9298758. [Google Scholar] [CrossRef]
- Malešević, J.; Isaković, M.; Garenfeld, M.A.; Došen, S.; Štrbac, M. The Impact of Stimulation Intensity on Spatial Discrimination with Multi-Pad Finger Electrode. Appl. Sci. 2021, 11, 10231. [Google Scholar] [CrossRef]
- Garenfeld, M.A.; Mortensen, C.K.; Strbac, M.; Dideriksen, J.L.; Dosen, S. Amplitude versus Spatially Modulated Electrotactile Feedback for Myoelectric Control of Two Degrees of Freedom. J. Neural Eng. 2020, 17, 046034. [Google Scholar] [CrossRef] [PubMed]
- Svensson, P.; Antfolk, C.; Björkman, A.; Malešević, N. Electrotactile Feedback for the Discrimination of Different Surface Textures Using a Microphone. Sensors 2021, 21, 3384. [Google Scholar] [CrossRef] [PubMed]
- Cordon, S.M.; Hwang, S.H.; Song, T.; Khang, G. Current and Frequency Modulation for the Characterization of Electrically-Elicited Tactile Sensations. Int. J. Precis. Eng. Manuf. 2012, 13, 2051–2058. [Google Scholar] [CrossRef]
- Dong, J.; Kamavuako, E.N.; Dosen, S.; Jensen, W.; Geng, B. The Short-Term Repeatability of Subdermal Electrical Stimulation for Sensory Feedback. IEEE Access 2020, 8, 63983–63992. [Google Scholar] [CrossRef]
- Solomonow, M.; Lyman, J.; Freedy, A. Electrotactile Two-Point Discrimination as a Function of Frequency, Body Site, Laterality, and Stimulation Codes. Ann. Biomed. Eng. 1977, 5, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Marcus, P.L.; Fuglevand, A.J. Perception of Electrical and Mechanical Stimulation of the Skin: Implications for Electrotactile Feedback. J. Neural Eng. 2009, 6, 066008. [Google Scholar] [CrossRef]
- Kourtesis, P.; Argelaguet, F.; Vizcay, S.; Marchal, M.; Pacchierotti, C. Electrotactile Feedback Applications for Hand and Arm Interactions: A Systematic Review, Meta-Analysis, and Future Directions. arXiv 2022, arXiv:2105.05343. [Google Scholar] [CrossRef]
- Lederman, S.J.; Klatzky, R.L. Haptic Perception: A Tutorial. Atten. Percept. Psychophys. 2009, 71, 1439–1459. [Google Scholar] [CrossRef] [Green Version]
- Yem, V.; Kajimoto, H. Wearable Tactile Device Using Mechanical and Electrical Stimulation for Fingertip Interaction with Virtual World. In Proceedings of the 2017 IEEE Virtual Reality (VR), Los Angeles, CA, USA, 18–22 March 2017; IEEE: Los Angeles, CA, USA, 2017; pp. 99–104. [Google Scholar]
- Loomis, J.M. Tactile Letter Recognition under Different Modes of Stimulus Presentation. Percept. Psychophys. 1974, 16, 401–408. [Google Scholar] [CrossRef]
- Fadaei, J.A.; Jeanmonod, K.; Kannape, O.A.; Potheegadoo, J.; Bleuler, H.; Hara, M.; Blanke, O. Cogno-Vest: A Torso-Worn, Force Display to Experimentally Induce Specific Hallucinations and Related Bodily Sensations. IEEE Trans. Cogn. Dev. Syst. 2021, 14, 497–506. [Google Scholar] [CrossRef]
- Zheng, Y.; Morrell, J.B. A Vibrotactile Feedback Approach to Posture Guidance. In Proceedings of the 2010 IEEE Haptics Symposium, Waltham, MA, USA, 25–26 March 2010; pp. 351–358. [Google Scholar]
- García-Valle, G.; Ferre, M.; Breñosa, J.; Vargas, D. Evaluation of Presence in Virtual Environments: Haptic Vest and User’s Haptic Skills. IEEE Access 2018, 6, 7224–7233. [Google Scholar] [CrossRef]
- Rupert, A.; Guedry, F.; Reschke, M. The Use of a Tactile Interface to Convey Position and Motion Perceptions. In North Atlantic Treaty Organization, Advisory Group for Aeronautics Research and Development, Aerospace Medical Panel; Virtual Interfaces: Research and Applications: Lisbon, Portugal, 1994. [Google Scholar]
- Ehrsson, H.H. The Experimental Induction of Out-of-Body Experiences. Science 2007, 317, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristjánsson, Á.; Moldoveanu, A.; Jóhannesson, Ó.I.; Balan, O.; Spagnol, S.; Valgeirsdóttir, V.V.; Unnthorsson, R. Designing Sensory-Substitution Devices: Principles, Pitfalls and Potential1. Restor. Neurol. Neurosci. 2016, 34, 769–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rognini, G.; Blanke, O. Cognetics: Robotic Interfaces for the Conscious Mind. Trends Cogn. Sci. 2016, 20, 162–164. [Google Scholar] [CrossRef]
- Piateski, E.; Jones, L. Vibrotactile Pattern Recognition on the Arm and Torso. In Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference, Pisa, Italy, 18–20 March 2005; pp. 90–95. [Google Scholar]
- Franceschi, M.; Seminara, L.; Dosen, S.; Strbac, M.; Valle, M.; Farina, D. A System for Electrotactile Feedback Using Electronic Skin and Flexible Matrix Electrodes: Experimental Evaluation. IEEE Trans. Haptics 2017, 10, 162–172. [Google Scholar] [CrossRef]
- Saida, S.; Shimizu, Y.; Wake, T. Computer-Controlled TVSS and Some Characteristics of Vibrotactile Letter Recognition. Percept. Mot. Ski. 1982, 55, 651–653. [Google Scholar] [CrossRef]
- Lu, X.; Lin, M.; Wang, S.; Hu, X.; Yin, H.; Yan, Y. Experiment Study for Wrist-Wearable Electro-Tactile Display. Sensors 2021, 21, 1332. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, J.; Yan, J.; Liu, W.; Song, G. Design of a Vibrotactile Vest for Contour Perception. Int. J. Adv. Robot. Syst. 2012, 9, 166. [Google Scholar] [CrossRef]
- Jure, F.A.; Spaich, E.G.; Malešević, J.; Kostić, M.; Štrbac, M.; Došen, S. Encoding of Spatial Patterns Using Electrotactile Stimulation via a Multi-Pad Electrode Placed on the Torso. Artif. Organs 2022, 46, 2044–2054. [Google Scholar] [CrossRef] [PubMed]
- Štrbac, M.; Isaković, M.; Malešević, J.; Marković, G.; Došen, S.; Jorgovanović, N.; Bijelić, G.; Kostić, M. Electrotactile Stimulation, A New Feedback Channel for First Responders. In Advances in Neuroergonomics and Cognitive Engineering; Ayaz, H., Asgher, U., Paletta, L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 489–496. [Google Scholar]
- Jure, F.A.; Spaich, E.G.; Petrini, L.; Dosen, S. The Effect of Cognitive Load on Electrotactile Communication via a Multi-Pad Electrode. In Advances in System-Integrated Intelligence; Valle, M., Lehmhus, D., Gianoglio, C., Ragusa, E., Seminara, L., Bosse, S., Ibrahim, A., Thoben, K.-D., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 530–539. [Google Scholar]
- Bobich, L.R.; Warren, J.P.; Sweeney, J.D.; Tillery, S.I.H.; Santello, M. Spatial Localization of Electrotactile Stimuli on the Fingertip in Humans. Somat. Mot. Res. 2007, 24, 179–188. [Google Scholar] [CrossRef]
- Weiss, T.; Walter, K.; Spohn, D.; Richter, M.; Torma, F.; Miltner, W.H.R. Spatial Discrimination Learning of Electrocutaneous Stimuli. Neurosci. Lett. 2007, 427, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.P.; Bobich, L.R.; Santello, M.; Sweeney, J.D.; Tillery, S.I.H. Receptive Field Characteristics under Electrotactile Stimulation of the Fingertip. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Szeto, A.Y.; Chung, Y.M. Effects of Training on Human Tracking of Electrocutaneous Signals. Ann. Biomed. Eng. 1986, 14, 369–381. [Google Scholar] [CrossRef]
- Kaczmarek, K.A. Electrotactile Adaptation on the Abdomen: Preliminary Results. IEEE Trans. Rehabil. Eng. 2000, 8, 499–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Lu, X.; Sun, H. The Wearable Tactile Information Expression System Based on Electrotactile Rendering. In Transactions on Edutainment XIII; Pan, Z., Cheok, A.D., Müller, W., Zhang, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; pp. 46–53. ISBN 978-3-662-54395-5. [Google Scholar]
- Novich, S.D.; Eagleman, D.M. Using Space and Time to Encode Vibrotactile Information: Toward an Estimate of the Skin’s Achievable Throughput. Exp. Brain Res. 2015, 233, 2777–2788. [Google Scholar] [CrossRef] [PubMed]
- Bach-y-Rita, P.; Kaczmarek, K.A.; Tyler, M.E.; Garcia-Lara, J. Form Perception with a 49-Point Electrotactile Stimulus Array on the Tongue: A Technical Note. J. Rehabil. Res. Dev. 1998, 35, 427–430. [Google Scholar]
- Geng, B.; Jensen, W. Human Ability in Identification of Location and Pulse Number for Electrocutaneous Stimulation Applied on the Forearm. J. NeuroEng. Rehabil. 2014, 11, 97. [Google Scholar] [CrossRef] [Green Version]
- Štrbac, M.; Belić, M.; Isaković, M.; Kojić, V.; Bijelić, G.; Popović, I.; Radotić, M.; Došen, S.; Marković, M.; Farina, D.; et al. Integrated and Flexible Multichannel Interface for Electrotactile Stimulation. J. Neural Eng. 2016, 13, 046014. [Google Scholar] [CrossRef] [Green Version]
- Beaudette, S.M.; Smith, S.G.V.S.; Bent, L.R.; Brown, S.H.M. Spine Posture Influences Tactile Perceptual Sensitivity of the Trunk Dorsum. Ann. Biomed. Eng. 2017, 45, 2804–2812. [Google Scholar] [CrossRef] [PubMed]
- Gardner, E.P.; Spencer, W.A. Sensory Funneling. I. Psychophysical Observations of Human Subjects and Responses of Cutaneous Mechanoreceptive Afferents in the Cat to Patterned Skin Stimuli. J. Neurophysiol. 1972, 35, 925–953. [Google Scholar] [CrossRef] [PubMed]
- Laskin, S.E.; Spencer, W.A. Cutaneous Masking. I. Psychophysical Observations on Interactions of Multipoint Stimuli in Man. J. Neurophysiol. 1979, 42, 1048–1060. [Google Scholar] [CrossRef] [PubMed]
- Weber, E. On the Tactile Senses; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Štrbac, M.; Isaković, M.; Belić, M.; Popović, I.; Simanić, I.; Farina, D.; Keller, T.; Došen, S. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2133–2145. [Google Scholar] [CrossRef] [PubMed]
- Cholewiak, R.W.; Brill, J.C.; Schwab, A. Vibrotactile Localization on the Abdomen: Effects of Place and Space. Percept. Psychophys. 2004, 66, 970–987. [Google Scholar] [CrossRef] [Green Version]
- Peerdeman, B.; Boere, D.; Witteveen, H.; Huis in ‘tVeld, R.; Hermens, H.; Stramigioli, S.; Rietman, H.; Veltink, P.; Misra, S. Myoelectric Forearm Prostheses: State of the Art from a User-Centered Perspective. JRRD 2011, 48, 719. [Google Scholar] [CrossRef] [Green Version]
- Blamey, P.J.; Clark, G.M. Psychophysical Studies Relevant to the Design of a Digital Electrotactile Speech Processor. J. Acoust. Soc. Am. 1987, 82, 116–125. [Google Scholar] [CrossRef]
- Taylor, M.M.; Creelman, C.D. PEST: Efficient Estimates on Probability Functions. J. Acoustical Soc. Am. 1967, 41, 782. [Google Scholar] [CrossRef]
- Isaković, M.; Štrbac, M.; Belić, M.; Bijelić, G.; Popović, I.; Radotić, M.; Došen, S.; Farina, D.; Keller, T. Dynamic Stimulation Patterns for Conveying Proprioceptive Information from Multi-DOF Prosthesis. In Converging Clinical and Engineering Research on Neurorehabilitation II; Ibáñez, J., González-Vargas, J., Azorín, J.M., Akay, M., Pons, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 601–605. [Google Scholar]
- Strbac, M.; Bijelic, G.; Malesevic, N.; Keller, T. System and Method for Electrotactile Feedback. U.S. Patent 10,828,177, 10 November 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malešević, J.; Kostić, M.; Jure, F.A.; Spaich, E.G.; Došen, S.; Ilić, V.; Bijelić, G.; Štrbac, M. Electrotactile Communication via Matrix Electrode Placed on the Torso Using Fast Calibration, and Static vs. Dynamic Encoding. Sensors 2022, 22, 7658. https://doi.org/10.3390/s22197658
Malešević J, Kostić M, Jure FA, Spaich EG, Došen S, Ilić V, Bijelić G, Štrbac M. Electrotactile Communication via Matrix Electrode Placed on the Torso Using Fast Calibration, and Static vs. Dynamic Encoding. Sensors. 2022; 22(19):7658. https://doi.org/10.3390/s22197658
Chicago/Turabian StyleMalešević, Jovana, Miloš Kostić, Fabricio A. Jure, Erika G. Spaich, Strahinja Došen, Vojin Ilić, Goran Bijelić, and Matija Štrbac. 2022. "Electrotactile Communication via Matrix Electrode Placed on the Torso Using Fast Calibration, and Static vs. Dynamic Encoding" Sensors 22, no. 19: 7658. https://doi.org/10.3390/s22197658
APA StyleMalešević, J., Kostić, M., Jure, F. A., Spaich, E. G., Došen, S., Ilić, V., Bijelić, G., & Štrbac, M. (2022). Electrotactile Communication via Matrix Electrode Placed on the Torso Using Fast Calibration, and Static vs. Dynamic Encoding. Sensors, 22(19), 7658. https://doi.org/10.3390/s22197658