High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division
Abstract
:1. Introduction
2. Background and Motivation
2.1. Rolling Shutter
2.2. Gaussian Blur
3. High-Speed RoI Extraction through Grid Virtual Division
3.1. System Overview
3.2. OCC Transmitter
3.3. OCC Receiver
3.4. Grid Virtual Division Scheme
Algorithm 1 Grid virtual division algorithm |
|
- There are only upper and lower adjacent blocks;
- There are only left and right adjacent blocks;
- There are both upper and lower adjacent blocks and left and right adjacent blocks;
- There are neither upper and lower adjacent blocks nor left and right adjacent blocks.
4. Results and Analysis
4.1. Experiment Setup
4.2. Grid Virtual Division Scheme Performance
4.2.1. Impact of Varying Transmission Frequencies
4.2.2. Impact of Different LED Shapes and Sizes
4.2.3. Impact of Different Numbers of LED
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VLC | Visible Light Communication |
OCC | Optical Camera Communication |
LED | Light Emitting Diode |
RoI | Region of Interest |
GVD | Grid Virtual Division |
RF | Radio Frequency |
6G | Six Generation |
COTS | Commercial Off-the-shelf |
CMOS | Complementary Metal Oxide Semiconductor |
OOK | On-Off Keying |
FSK | Frequency Shift Keying |
UPSOOKM | Undersampling Phase Shift ON-OFF Keying Modulation. |
UPAM | Undersampling Pulse Amplitude Modulation |
CSK | Color Shift Keying |
IS | Image Sensor |
CV | Computer Vision |
OPENCV | Open Source Computer Vision |
BER | Bit Error Rate |
BSN | Block Sequence Number |
MOSFET | Metal-Oxide-Semiconductor Field-Effect Transistor |
ISO | International Organization for Standardization |
References
- Cisco, U. Cisco Annual Internet Report (2018–2023) White Paper; Cisco: San Jose, CA, USA, 2020. [Google Scholar]
- Gui, G.; Liu, M.; Tang, F.; Kato, N.; Adachi, F. 6G: Opening new horizons for integration of comfort, security, and intelligence. IEEE Wirel. Commun. 2020, 27, 126–132. [Google Scholar] [CrossRef]
- Le Minh, H.; Ghassemlooy, Z.; O’Brien, D.; Faulkner, G. Indoor gigabit optical wireless communications: Challenges and possibilities. In Proceedings of the 2010 12th International Conference on Transparent Optical Networks, Munich, Germany, 27 June–1 July 2010; pp. 1–6. [Google Scholar]
- Danakis, C.; Afgani, M.; Povey, G.; Underwood, I.; Haas, H. Using a CMOS camera sensor for visible light communication. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 1244–1248. [Google Scholar]
- Cahyadi, W.A.; Chung, Y.H.; Ghassemlooy, Z.; Hassan, N.B. Optical Camera Communications: Principles, Modulations, Potential and Challenges. Electronics 2020, 9, 1339. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, J. Composite Amplitude-Shift Keying for Effective LED-Camera VLC. IEEE Trans. Mob. Comput. 2020, 19, 528–539. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, J.; Chen, C.; Chen, L. Enabling Real-Life Deployment of Piggyback-VLC via Light Emission Composition. IEEE Internet Comput. 2020, 24, 59–65. [Google Scholar] [CrossRef]
- Le, N.T.; Hossain, M.A.; Jang, Y.M. A survey of design and implementation for optical camera communication. Signal Process. Image Commun. 2017, 53, 95–109. [Google Scholar] [CrossRef]
- Mohsan, S.A.H. Optical camera communications: Practical constraints, applications, potential challenges, and future directions. J. Opt. Technol. 2021, 88, 729–741. [Google Scholar] [CrossRef]
- Yamazato, T.; Takai, I.; Okada, H.; Fujii, T.; Yendo, T.; Arai, S.; Andoh, M.; Harada, T.; Yasutomi, K.; Kagawa, K.; et al. Image-sensor-based visible light communication for automotive applications. IEEE Commun. Mag. 2014, 52, 88–97. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, J. Boosting the throughput of LED-camera VLC via composite light emission. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 15–19 April 2018; pp. 315–323. [Google Scholar]
- Yang, F.; Li, S.; Yang, Z.; Qian, C.; Gu, T. Spatial Multiplexing for Non-Line-of-Sight Light-to-Camera Communications. IEEE Trans. Mob. Comput. 2019, 18, 2660–2671. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Tang, X.; Li, Y.; Zhang, M.; Lin, C.; Ghassemlooy, Z.; Wei, Y.; Wu, Y.; Li, H. Experimental demonstration of optical camera communications based indoor visible light positioning system. In Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017; pp. 1–3. [Google Scholar]
- Yang, F.; Li, S.; Zhang, H.; Niu, Y.; Qian, C.; Yang, Z. LIPO: Indoor position and orientation estimation via superposed reflected light. Pers. Ubiquitous Comput. 2022, 26, 475–490. [Google Scholar] [CrossRef]
- Majlesein, B.; Rufo, J.; Moreno, D.; Guerra, V.; Rabadan, J. Underwater Optical Camera Communications Based on a Multispectral Camera and Spectral Variations of the LED Emission. In LIOT ’20: Proceedings of the Workshop on Light Up the IoT; Association for Computing Machinery: Melbourne, Australia, 2020; pp. 30–35. [Google Scholar]
- Yamazato, T.; Kinoshita, M.; Arai, S.; Souke, E.; Yendo, T.; Fujii, T.; Kamakura, K.; Okada, H. Vehicle Motion and Pixel Illumination Modeling for Image Sensor Based Visible Light Communication. IEEE J. Sel. Areas Commun. 2015, 33, 1793–1805. [Google Scholar] [CrossRef]
- Ji, P.; Tsai, H.M.; Wang, C.; Liu, F. Vehicular Visible Light Communications with LED Taillight and Rolling Shutter Camera. In Proceedings of the 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, Korea, 18–21 May 2014; pp. 1–6. [Google Scholar]
- Mori, K.; Takahashi, T.; Ide, I.; Murase, H.; Miyahara, T.; Tamatsu, Y. Recognition of foggy conditions by in-vehicle camera and millimeter wave radar. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 13–15 June 2007; pp. 87–92. [Google Scholar]
- Shen, Y.; Ozguner, U.; Redmill, K.; Liu, J. A robust video based traffic light detection algorithm for intelligent vehicles. In Proceedings of the 2009 IEEE Intelligent Vehicles Symposium, Xi’an, China, 3–5 June 2009; pp. 521–526. [Google Scholar]
- Yang, Y.; Hao, J.; Luo, J. CeilingTalk: Lightweight indoor broadcast through LED-camera communication. IEEE Trans. Mob. Comput. 2017, 16, 3308–3319. [Google Scholar] [CrossRef]
- Yang, Y.; Nie, J.; Luo, J. Reflexcode: Coding with superposed reflection light for led-camera communication. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, Snowbird, UT, USA, 16–20 October 2017; pp. 193–205. [Google Scholar]
- Hu, P.; Pathak, P.H.; Feng, X.; Fu, H.; Mohapatra, P. Colorbars: Increasing data rate of led-to-camera communication using color shift keying. In Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies, Heidelberg, Germany, 1–4 December 2015; pp. 1–13. [Google Scholar]
- Wang, Q.; Zhang, P.; Sun, Y.; Yang, Y. A General Model for Dimmable Optical Camera Communication. In Proceedings of the 2021 International Conference on Sensing, Measurement & Data Analytics in the Era of Artificial Intelligence (ICSMD), Nanjing, China, 21–23 October 2021; pp. 1–7. [Google Scholar]
- Do, T.H.; Yoo, M. Analysis on visible light communication using rolling shutter CMOS sensor. In Proceedings of the 2015 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 28–30 October 2015; pp. 755–757. [Google Scholar]
- Lee, H.Y.; Lin, H.M.; Wei, Y.L.; Wu, H.I.; Tsai, H.M.; Lin, K.C.J. Rollinglight: Enabling line-of-sight light-to-camera communications. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, Florence, Italy, 18–22 May 2015; pp. 167–180. [Google Scholar]
- Luo, P.; Zhang, M.; Ghassemlooy, Z.; Zvanovec, S.; Feng, S.; Zhang, P. Undersampled-based modulation schemes for optical camera communications. IEEE Commun. Mag. 2018, 56, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; Ghassemlooy, Z.; Le Minh, H.; Tang, X.; Tsai, H.M. Undersampled phase shift ON-OFF keying for camera communication. In Proceedings of the 2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP), Hefei, China, 23–25 October 2014; pp. 1–6. [Google Scholar]
- Luo, P.; Ghassemlooy, Z.; Le Minh, H.; Tsai, H.M.; Tang, X. Undersampled-PAM with subcarrier modulation for camera communications. In Proceedings of the 2015 Opto-Electronics and Communications Conference (OECC), Shanghai, China, 28 June–2 July 2015; pp. 1–3. [Google Scholar]
- Hu, P.; Pathak, P.H.; Zhang, H.; Yang, Z.; Mohapatra, P. High speed led-to-camera communication using color shift keying with flicker mitigation. IEEE Trans. Mob. Comput. 2019, 19, 1603–1617. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.S.; Pannuto, P.; Hsiao, K.J.; Dutta, P. Luxapose: Indoor positioning with mobile phones and visible light. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pp. 447–458. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- He, J.; Chen, J.N.; Liu, S.; Kortylewski, A.; Yang, C.; Bai, Y.; Wang, C. Transfg: A transformer architecture for fine-grained recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 852–860. [Google Scholar]
- Hasan, M.K.; Chowdhury, M.Z.; Shahjalal, M.; Nguyen, V.T.; Jang, Y.M. Performance Analysis and Improvement of Optical Camera Communication. Appl. Sci. 2018, 8, 2527. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, C.; Sun, Y.; Yang, Y. Gsnake: A lightweight SNR optimization algorithm for practical optical camera communication. In Proceedings of the 2021 International Conference on Optical Instruments and Technology: Optical Communication and Optical Signal Processing, Virtual, 8–10 April 2022; Volume 12278, p. 122780B. [Google Scholar]
Parameter | Value |
---|---|
Round transmitter No. 1 | 0.13 m |
Round transmitter No. 2 | 0.3 m |
Square transmitter No. 1 | 0.14 m × 0.14 m |
Square transmitter No. 2 | 0.25 m × 0.25 m |
Microcontroller | ARM Cortex-M4 GD32F330G8U6 |
Modulation | On-Off Keying |
Receiver | iPhone 8 Plus |
Frame rate | 30 fps |
Exposure times | 1/8000 s |
ISO | 350 |
Screen resolution | |
Pixel | dual 12-megapixel |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhang, P.; Sun, Y.; Deng, X.; Yang, Y.; Chen, L. High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division. Sensors 2022, 22, 8375. https://doi.org/10.3390/s22218375
Hu X, Zhang P, Sun Y, Deng X, Yang Y, Chen L. High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division. Sensors. 2022; 22(21):8375. https://doi.org/10.3390/s22218375
Chicago/Turabian StyleHu, Xin, Pinpin Zhang, Yimao Sun, Xiong Deng, Yanbing Yang, and Liangyin Chen. 2022. "High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division" Sensors 22, no. 21: 8375. https://doi.org/10.3390/s22218375
APA StyleHu, X., Zhang, P., Sun, Y., Deng, X., Yang, Y., & Chen, L. (2022). High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division. Sensors, 22(21), 8375. https://doi.org/10.3390/s22218375