Wireless Communication Platform Based on an Embroidered Antenna-Sensor for Real-Time Breathing Detection
Abstract
:1. Introduction
2. Design and Fabrication of E-Textile T-Shirt for Breathing Monitoring
2.1. Mechanism of Breath Detection
2.2. Embroidered Antenna-Based Sensor Design
2.3. Respiratory Antenna-Sensor Based on RSSI Measurement
3. Experimental Measurement and Performance Analysis
- Respiration with small movement (walking);
- Respiration with speaking activities (reading a book);
- Stable pause without any other activities.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aroganam, G.; Manivannan, N.; Harrison, D. Review on wearable technology sensors used in consumer sport applications. Sensors 2019, 19, 1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rein, M.; Favrod, V.D.; Hou, C.; Khudiyev, T.; Stolyarov, A.; Cox, J.; Chung, C.-C.; Chhav, C.; Ellis, M.; Joannopoulos, J. Diode fibres for fabric-based optical communications. Nature 2018, 560, 214–218. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Yang, B.D.; Su, Y.; Tran, P.L.; Joe, P.; Anderson, E.; Xia, J.; Doraiswamy, V.; Dehdashti, B.; Feng, X.; et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA 2014, 111, 1927–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliverti, A. Wearable technology: Role in respiratory health and disease. Breathe 2017, 13, e27–e36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [Green Version]
- Cesareo, A.; Nido, S.A.; Biffi, E.; Gandossini, S.; D’Angelo, M.G.; Aliverti, A. A wearable device for breathing frequency monitoring: A pilot study on patients with muscular dystrophy. Sensors 2020, 20, 5346. [Google Scholar] [CrossRef]
- Abbate, S.; Avvenuti, M.; Light, J. Usability study of a wireless monitoring system among Alzheimer’s disease elderly population. Int. J. Telemed. Appl. 2014, 2014, 617495. [Google Scholar] [CrossRef] [Green Version]
- Bates, J.H.T. Systems physiology of the airways in health and obstructive pulmonary disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 423–437. [Google Scholar] [CrossRef] [Green Version]
- Gholamrezaei, A.; van Diest, I.; Aziz, Q.; Vlaeyen, J.W.S.; van Oudenhove, L. Psychophysiological responses to various slow, deep breathing techniques. Psychophysiology 2021, 58, e13712. [Google Scholar] [CrossRef]
- Liu, H.; Allen, J.; Zheng, D.; Chen, F. Recent development of respiratory rate measurement technologies. Physiol. Meas. 2019, 40, 07TR01. [Google Scholar] [CrossRef]
- Massaroni, C.; Nicolò, A.; Presti, D.L.; Sacchetti, M.; Silvestri, S.; Schena, E. Contact-based methods for measuring respiratory rate. Sensors 2019, 19, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlton, P.H.; Birrenkott, D.A.; Bonnici, T.; Pimentel, M.A.F.; Johnson, A.E.W.; Alastruey, J.; Tarassenko, L.; Watkinson, P.J.; Beale, R.; Clifton, D.A. Breathing rate estimation from the electrocardiogram and photoplethysmogram: A review. IEEE Rev. Biomed. Eng. 2017, 11, 2–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bricout, A.; Fontecave-Jallon, J.; Colas, D.; Gerard, G.; Pépin, J.-L.; Guméry, P.-Y. Adaptive accelerometry derived respiration: Comparison with respiratory inductance plethysmography during sleep. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: New York, NY, USA; pp. 6714–6717. [Google Scholar]
- Satija, U.; Ramkumar, B.; Manikandan, M.S. A review of signal processing techniques for electrocardiogram signal quality assessment. IEEE Rev. Biomed. Eng. 2018, 11, 36–52. [Google Scholar] [CrossRef]
- Wang, P.; Ma, Y.; Liang, F.; Zhang, Y.; Yu, X.; Li, Z.; An, Q.; Lv, H.; Wang, J. Non-contact vital signs monitoring of dog and cat using a UWB radar. Animals 2020, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateu-Mateus, M.; Guede-Fernández, F.; Rodriguez-Ibáñez, N.; García-González, M.A.; Ramos-Castro, J.; Fernández-Chimeno, M. A non-contact camera-based method for respiratory rhythm extraction. Biomed. Signal Process. Control 2021, 66, 102443. [Google Scholar] [CrossRef]
- Jakkaew, P.; Onoye, T. Non-contact respiration monitoring and body movements detection for sleep using thermal imaging. Sensors 2020, 20, 6307. [Google Scholar] [CrossRef]
- Abbas, A.K.; Heimann, K.; Jergus, K.; Orlikowsky, T.; Leonhardt, S. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed. Eng. Online 2011, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Presti, D.L.; Massaroni, C.; Formica, D.; Saccomandi, P.; Giurazza, F.; Caponero, M.A.; Schena, E. Smart textile based on 12 fiber Bragg gratings array for vital signs monitoring. IEEE Sens. J. 2017, 17, 6037–6043. [Google Scholar] [CrossRef]
- Milici, S.; Lázaro, A.; Villarino, R.; Girbau, D.; Magnarosa, M. Wireless wearable magnetometer-based sensor for sleep quality monitoring. IEEE Sens. J. 2018, 18, 2145–2152. [Google Scholar] [CrossRef]
- Cesareo, A.; Previtali, Y.; Biffi, E.; Aliverti, A. Assessment of breathing parameters using an inertial measurement unit (IMU)-based system. Sensors 2018, 19, 88. [Google Scholar] [CrossRef]
- Roudjane, M.; Bellemare-Rousseau, S.; Khalil, M.; Gorgutsa, S.; Miled, A.; Messaddeq, Y. A portable wireless communication platform based on a multi-material fiber sensor for real-time breath detection. Sensors 2018, 18, 973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, N.A.; Samsuri, N.A.; Rahim, M.K.A.; Othman, N. The effects of human body and bending on dipole textile antenna performance and SAR. In Proceedings of the 2012 Asia-Pacific Conference on Microwave, Kaohsiung, Taiwan, 4–7 December 2012; IEEE: New York, NY, USA; pp. 34–36. [Google Scholar]
- El Gharbi, M.; Fernández-García, R.; Gil, I. Embroidered Wearable Antenna-based Sensor for Real-Time Breath Monitoring. Measurement 2022, 195, 111080. [Google Scholar] [CrossRef]
- Fleming, S.; Thompson, M.; Stevens, R.; Heneghan, C.; Plüddemann, A.; Maconochie, I.; Tarassenko, L.; Mant, D. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: A systematic review of observational studies. Lancet 2011, 377, 1011–1018. [Google Scholar] [CrossRef] [Green Version]
- Heikkinen, J.J.; Laine-Ma, T.T.; Kivikoski, M.A. Flexible fabric-base patch antenna with protective coating. In Proceedings of the 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, USA, 9–15 June 2007; pp. 4168–4171. [Google Scholar]
- Kellomäki, T.; Virkki, J.; Merilampi, S.; Ukkonen, L. Towards washable wearable antennas: A comparison of coating materials for screen-printed textile-based UHF RFID tags. Int. J. Antennas Propag. 2012, 2012, 476570. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Kurihara, Y.; Nakamura, T.; Tanaka, H. Design of a low-frequency microphone for mobile phones and its application to ubiquitous medical and healthcare monitoring. IEEE Sens. J. 2010, 10, 934–941. [Google Scholar] [CrossRef]
- Milici, S.; Lorenzo, J.; Lazaro, A.; Villarino, R.; Girbau, D. Wireless breathing sensor based on wearable modulated frequency selective surface. IEEE Sens. J. 2016, 17, 1285–1292. [Google Scholar] [CrossRef]
- Roudjane, M.; Bellemare-Rousseau, S.; Drouin, E.; Belanger-Huot, B.; Dugas, M.-A.; Miled, A.; Messaddeq, Y. Smart T-shirt based on wireless communication spiral fiber sensor array for real-time breath monitoring: Validation of the technology. IEEE Sens. J. 2020, 20, 10841–10850. [Google Scholar] [CrossRef]
- Penne, J.; Schaller, C.; Hornegger, J.; Kuwert, T. Robust real-time 3D respiratory motion detection using time-of-flight cameras. Int. J. Comput. Assist. Radiol. Surg. 2008, 3, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Gunaratne, P.; Tamura, H.; Yoshida, C.; Sakurai, K.; Tanno, K.; Takahashi, N.; Nagata, J. A Study on breathing and heartbeat monitoring system during sleeping using multi-piezoelectric elements. In Proceedings of the 2019 Moratuwa Engineering Research Conference, Moratuwa, Sri Lanka, 3–5 July 2019; IEEE: New York, NY, USA; pp. 382–387. [Google Scholar]
- Ramos-Garcia, R.I.; da Silva, F.; Kondi, Y.; Sazonov, E.; Dunne, L.E. Analysis of a coverstitched stretch sensor for monitoring of breathing. In Proceedings of the 2016 10th International Conference on Sensing Technology, Nanjing, China, 11–13 November 2016; IEEE: New York, NY, USA; pp. 1–6. [Google Scholar]
- Elfaramawy, T.; Fall, C.L.; Arab, S.; Morissette, M.; Lellouche, F.; Gosselin, B. A wireless respiratory monitoring system using a wearable patch sensor network. IEEE Sens. J. 2018, 19, 650–657. [Google Scholar] [CrossRef]
Breathing System | Sensor Type | Measuring Parameter | Technique | Advantages | Disadvantages |
---|---|---|---|---|---|
System 1 (our previous work) | Meander dipole antenna sensor connected to a SMA | Frequency shift of the S11 | Vector Network Analyzer (VNA) |
|
|
System 2 (our current work) | Meander dipole antenna sensor connected to a Bluetooth transmitter | Received Signal Strength Indicator (RSSI) | Wireless communication with a portable base station |
|
|
Ref | [28] | [29] | [30] | [31] | [32] | [33] | [34] | This Work |
---|---|---|---|---|---|---|---|---|
Sensor type | Microphone | Thermistor | Spiral antenna | Camera | Piezoelectric | Resistive | Multimodal Patch | Dipole antenna |
1C.T | Mobile phone | 2 PAT | 3 BT | Wired | WatchPAT | wired | WIFI | 3BT |
Method | Recording sound | Nose airflow | RSSI | Image analysis | Raw signal | 4 RIP | Signal amplitude | RSSI |
Real-time | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes |
Textile | No | No | Yes | No | No | Yes | No | Yes |
Size (mm2) | 450 × 250 | _ | 200 × 100 | 50 × 76 | 70 × 60 | 310 × 40 | 65.53 × 26.67 | 45 × 4.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Gharbi, M.; Fernández-García, R.; Gil, I. Wireless Communication Platform Based on an Embroidered Antenna-Sensor for Real-Time Breathing Detection. Sensors 2022, 22, 8667. https://doi.org/10.3390/s22228667
El Gharbi M, Fernández-García R, Gil I. Wireless Communication Platform Based on an Embroidered Antenna-Sensor for Real-Time Breathing Detection. Sensors. 2022; 22(22):8667. https://doi.org/10.3390/s22228667
Chicago/Turabian StyleEl Gharbi, Mariam, Raúl Fernández-García, and Ignacio Gil. 2022. "Wireless Communication Platform Based on an Embroidered Antenna-Sensor for Real-Time Breathing Detection" Sensors 22, no. 22: 8667. https://doi.org/10.3390/s22228667
APA StyleEl Gharbi, M., Fernández-García, R., & Gil, I. (2022). Wireless Communication Platform Based on an Embroidered Antenna-Sensor for Real-Time Breathing Detection. Sensors, 22(22), 8667. https://doi.org/10.3390/s22228667