Force Plate-Derived Countermovement Jump Normative Data and Benchmarks for Professional Rugby League Players
Abstract
1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guthrie, B.; Jagim, A.R.; Jones, M.T. Ready or Not, Here I Come: A Scoping Review of Methods Used to Assess Player Readiness Via Indicators of Neuromuscular Function in Football Code Athletes. Strength Cond. J. 2022. Ahead of Print. [Google Scholar] [CrossRef]
- Weldon, A.; Duncan, M.J.; Turner, A.; Lockie, R.G.; Loturco, I. Practices of strength and conditioning coaches in professional sports: A systematic review. Biol. Sport 2021, 39, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.W.; Smith, A.; Macnaughton, L.S.; French, D.N. Strength and Conditioning and Concurrent Training Practices in Elite Rugby Union. J. Strength Cond. Res. 2016, 30, 3354–3366. [Google Scholar] [CrossRef] [PubMed]
- Zabaloy, S.; Tondelli, E.; Pereira, L.A.; Freitas, T.T.; Loturco, I. Training and testing practices of strength and conditioning coaches in Argentinian Rugby Union. Int. J. Sport. Sci. Coach. 2022, 17, 1331–1344. [Google Scholar] [CrossRef]
- Weldon, A.; Duncan, M.J.; Turner, A.; Sampaio, J.; Noon, M.; Wong, D.; Lai, V.W. Contemporary practices of strength and conditioning coaches in professional soccer. Biol. Sport 2021, 38, 377–390. [Google Scholar] [CrossRef]
- Badby, A.J.; Mundy, P.; Comfort, P.; Lake, J.; McMahon, J.J. Agreement among countermovement jump force-time variables obtained from a wireless dual force plate system and an industry gold standard system. In Proceedings of the International Society of Biomechanics in Sports, Liverpool, UK, 19–23 July 2022. [Google Scholar]
- Lake, J.; Mundy, P.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar] [CrossRef]
- McMahon, J.J.; Lake, J.P.; Dos’ Santos, T.; Jones, P.; Thomasson, M.; Comfort, P. Countermovement jump standards in rugby league: What is a ‘good’ performance? J. Strength Cond. Res. 2022, 36, 1691–1698. [Google Scholar] [CrossRef]
- McMahon, J.J.; Lake, J.P.; Ripley, N.J.; Comfort, P. Vertical jump testing in rugby league: A rationale for calculating take-off momentum. J. Appl. Biomech. 2020, 36, 370–374. [Google Scholar] [CrossRef]
- McMahon, J.J.; Lake, J.; Comfort, P. Identifying and reporting position-specific countermovement jump outcome and phase characteristics within rugby league. PLoS ONE 2022, 17, e0265999. [Google Scholar] [CrossRef]
- Ireton, M.R.E.; Till, K.; Weaving, D.; Jones, B. Differences in the Movement Skills and Physical Qualities of Elite Senior & Academy Rugby League Players. J. Strength Cond. Res. 2019, 33, 1328–1338. [Google Scholar]
- Till, K.; Scantlebury, S.; Jones, B. Anthropometric and Physical Qualities of Elite Male Youth Rugby League Players. Sport. Med. 2017, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.B.; Hansen, K.T. Strength and power predictors of sports speed. J. Strength Cond. Res. 2005, 19, 349–357. [Google Scholar] [PubMed]
- Gabbett, T.J.; Jenkins, D.G.; Abernethy, B. Correlates of Tackling Ability in High-Performance Rugby League Players. J. Strength Cond. Res. 2011, 25, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J.; Jenkins, D.G.; Abernethy, B. Relative importance of physiological, anthropometric, and skill qualities to team selection in professional rugby league. J. Sport. Sci. 2011, 29, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Murphy, S.; Rej, S.J.; Comfort, P. Countermovement-Jump-Phase Characteristics of Senior and Academy Rugby League Players. Int. J. Sport. Physiol. Perform. 2017, 12, 803–811. [Google Scholar] [CrossRef]
- McGuigan, M.R.; Cormack, S.J.; Gill, N.D. Strength and Power Profiling of Athletes: Selecting Tests and How to Use the Information for Program Design. Strength Cond. J. 2013, 35, 7–14. [Google Scholar] [CrossRef]
- Lockie, R.G.; Risso, F.G.; Giuliano, D.V.; Orjalo, A.J.; Jalilvand, F. Practical Fitness Profiling Using Field Test Data for Female Elite-Level Collegiate Soccer Players: A Case Analysis of a Division I Team. Strength Cond. J. 2018, 40, 58–71. [Google Scholar] [CrossRef]
- Turner, A.N.; Jones, B.; Stewart, P.; Bishop, C.; Parmar, N.; Chavda, S.; Read, P. Total Score of Athleticism: Holistic Athlete Profiling to Enhance Decision-Making. Strength Cond. J. 2019, 41, 91–101. [Google Scholar] [CrossRef]
- Howarth, D.J.; Cohen, D.D.; McLean, B.D.; Coutts, A.J. Establishing the Noise: Interday Ecological Reliability of Countermovement Jump Variables in Professional Rugby Union Players. J. Strength Cond. Res. 2022, 36, 3159–3166. [Google Scholar] [CrossRef]
- Bridges, A.J.; Holler, K.A. How many is enough? Determining optimal sample sizes for normative studies in pediatric neuropsychology. Child Neuropsychol. 2007, 13, 528–538. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Weakley, J.; García-Pinillos, F.; Rojas, F.J.; García-Ramos, A. Influence of countermovement depth on the countermovement jump-derived reactive strength index modified. Eur. J. Sport Sci. 2021, 21, 1606–1616. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; Rojas, F.J.; Gómez-Martínez, F.; García-Ramos, A. Vertical jump performance is affected by the velocity and depth of the countermovement. Sport. Biomech 2021, 20, 1015–1030. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sixto, A.; McMahon, J.J.; Floría, P. Verbal instructions affect reactive strength index modified and time-series waveforms in basketball players. Sport. Biomech. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Owen, N.J.; Watkins, J.; Kilduff, L.P.; Bevan, H.R.; Bennett, M.A. Development of a Criterion Method to Determine Peak Mechanical Power Output in a Countermovement Jump. J. Strength Cond. Res. 2014, 28, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Moir, G.L. Three Different Methods of Calculating Vertical Jump Height from Force Platform Data in Men and Women. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [Google Scholar] [CrossRef]
- Harry, J.R.; Blinch, J.; Barker, L.A.; Krzyszkowski, J.; Chowning, L. Low-Pass Filter Effects on Metrics of Countermovement Vertical Jump Performance. J. Strength Cond. Res. 2022, 36, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.P.; Mundy, P.D.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. The effect of barbell load on vertical jump landing force-time characteristics. J. Strength Cond. Res. 2021, 35, 25–32. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Fernandes, J.F.T.; Rojas, F.J.; García-Ramos, A. Reliability and Magnitude of Countermovement Jump Performance Variables: Influence of the Take-off Threshold. Meas. Phys. Educ. Exerc. Sci. 2021, 25, 227–235. [Google Scholar] [CrossRef]
- McMahon, J.J.; Jones, P.A.; Suchomel, T.J.; Lake, J.; Comfort, P. Influence of Reactive Strength Index Modified on Force- and Power-Time Curves. Int. J. Sport. Physiol. Perform. 2018, 13, 220–227. [Google Scholar] [CrossRef]
- Linthorne, N.P. The correlation between jump height and mechanical power in a countermovement jump is artificially inflated. Sport. Biomech. 2021, 20, 3–21. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.; Bartlett, J.D.; Gastin, P.B. Red, Amber, or Green? Athlete Monitoring in Team Sport: The Need for Decision-Support Systems. Int. J. Sport. Physiol. Perform. 2017, 12, S273–S279. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.; Newton, R. Comparison of Lower Body Strength, Power, Acceleration, Speed, Agility, and Sprint Momentum to Describe and Compare Playing Rank among Professional Rugby League Players. J. Strength Cond. Res. 2008, 22, 153. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, D.; Murata, M.; Inaba, Y. Effect of Landing Posture on Jump Height Calculated from Flight Time. Appl. Sci. 2020, 10, 776. [Google Scholar] [CrossRef]
- Kennedy, R.A.; Drake, D. Improving the signal-to-noise ratio when monitoring countermovement jump performance. J. Strength Cond. Res. 2021, 35, 85–90. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef]
- Mercer, R.A.J.; Russell, J.L.; McGuigan, L.C.; Coutts, A.J.; Strack, D.S.; McLean, B.D. Finding the Signal in the Noise—Interday Reliability and Seasonal Sensitivity of 84 Countermovement Jump Variables in Professional Basketball Players. J. Strength Cond. Res. 2021. [Google Scholar] [CrossRef]
- Glassbrook, D.J.; Doyle, T.L.A.; Alderson, J.A.; Fuller, J.T. The Demands of Professional Rugby League Match-Play: A Meta-analysis. Sport. Med.-Open 2019, 5, 24. [Google Scholar] [CrossRef]
- Gabbett, T.J.; Jenkins, D.G.; Abernethy, B. Physical demands of professional rugby league training and competition using microtechnology. J. Sci. Med. Sport 2012, 15, 80–86. [Google Scholar] [CrossRef]
- Cummins, C.; Orr, R. Analysis of physical collisions in elite national rugby league match play. Int. J. Sport. Physiol. Perform. 2015, 10, 732–739. [Google Scholar] [CrossRef]
- Redman, K.J.; Wade, L.; Kelly, V.G.; Connick, M.J.; Beckman, E.M. Predicting Rugby League Tackle Outcomes Using Strength and Power Principal Components. Int. J. Sport. Physiol. Perform. 2022, 17, 278–285. [Google Scholar] [CrossRef] [PubMed]





Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McMahon, J.J.; Ripley, N.J.; Comfort, P. Force Plate-Derived Countermovement Jump Normative Data and Benchmarks for Professional Rugby League Players. Sensors 2022, 22, 8669. https://doi.org/10.3390/s22228669
McMahon JJ, Ripley NJ, Comfort P. Force Plate-Derived Countermovement Jump Normative Data and Benchmarks for Professional Rugby League Players. Sensors. 2022; 22(22):8669. https://doi.org/10.3390/s22228669
Chicago/Turabian StyleMcMahon, John J., Nicholas J. Ripley, and Paul Comfort. 2022. "Force Plate-Derived Countermovement Jump Normative Data and Benchmarks for Professional Rugby League Players" Sensors 22, no. 22: 8669. https://doi.org/10.3390/s22228669
APA StyleMcMahon, J. J., Ripley, N. J., & Comfort, P. (2022). Force Plate-Derived Countermovement Jump Normative Data and Benchmarks for Professional Rugby League Players. Sensors, 22(22), 8669. https://doi.org/10.3390/s22228669

