MASPC_Transform: A Plant Point Cloud Segmentation Network Based on Multi-Head Attention Separation and Position Code
Abstract
:1. Introduction
- We propose a plant point cloud segmentation network named MASPC_Transform, and evaluate its segmentation performance on the ROSE_X dataset.
- We propose a loss function of multi-head attention separation based on spatial similarity. This loss can make the attention positions of different attention heads as dispersed as possible, and establish a connection for the point clouds that are far away but belong to the same organ, thus providing more semantic information for accurate segmentation.
- In order to reduce the impact of point cloud disorder and irregularity on feature extraction, we propose a position coding method that can reflect the relative position of points, and use the position coding network in the local and global feature extraction modules of MASPC_Transform.
2. Related Work
3. Approach
3.1. Architecture of MASPC_Transform
3.2. Position Code
3.3. MSG and SortNet Based on Position Code Network
3.4. Multi-Head Attention Separation Loss Based on Spatial Similarity
4. Experiment
4.1. Data Set
4.2. Implementation Details
4.3. Evaluation Methodology
4.4. Segmentation Results
4.5. Visual Effects
4.6. Ablation Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crossa, J.; Fritsche-Neto, R.; Montesinos-Lopez, O.A.; Costa-Neto, G.; Dreisigacker, S.; Montesinos-Lopez, A.; Bentley, A.R. The modern plant breeding triangle: Optimizing the use of genomics, phenomics, and enviromics data. Front. Plant Sci. 2021, 12, 651480. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhu, Y.; Wang, X.; Sun, X.; Ding, Y.; Cao, W.; Hu, Z. Progress and development on biological information of crop phenotype research applied to real-time variable-rate fertilization. Plant Methods 2020, 16, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Arbona, V.; Iglesias, D.J.; Talón, M.; Gómez-Cadenas, A. Plant phenotype demarcation using nontargeted LC-MS and GC-MS metabolite profiling. J. Agric. Food Chem. 2009, 57, 7338–7347. [Google Scholar] [CrossRef]
- Sun, S.; Li, C.; Chee, P.W.; Paterson, A.H.; Jiang, Y.; Xu, R.; Robertson, J.S.; Adhikari, J.; Shehzad, T. Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering. ISPRS J. Photogramm. Remote Sens. 2020, 160, 195–207. [Google Scholar] [CrossRef]
- Sun, S.; Liang, N.; Zuo, Z.; Parsons, D.; Morel, J.; Shi, J.; Wang, Z.; Luo, L.; Zhao, L.; Fang, H.; et al. Estimation of botanical composition in mixed clover–grass fields using machine learning-based image analysis. Front. Plant Sci. 2021, 12, 622429. [Google Scholar] [CrossRef]
- Aginako, N.; Lozano, J.; Quartulli, M.; Sierra, B.; Olaizola, I.G. Identification of plant species on large botanical image datasets. In Proceedings of the 1st International Workshop on Environnmental Multimedia Retrieval co-located with ACM International Conference on Multimedia Retrieval, EMR@ ICMR 2014, Glasgow, UK, 1 April 2014; pp. 38–44. [Google Scholar]
- Grand-Brochier, M.; Vacavant, A.; Cerutti, G.; Kurtz, C.; Weber, J.; Tougne, L. Tree leaves extraction in natural images: Comparative study of preprocessing tools and segmentation methods. IEEE Trans. Image Process. 2015, 24, 1549–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yogeswararao, G.; Malmathanraj, R.; Palanisamy, P. Fractional weighted nuclear norm based two dimensional linear discriminant features for cucumber leaf disease recognition. Multimed. Tools Appl. 2022, 81, 1–21. [Google Scholar] [CrossRef]
- Li, Y.; Gao, J.; Wang, X.; Chen, Y.; He, Y. Depth camera based remote three-dimensional reconstruction using incremental point cloud compression. Comput. Electr. Eng. 2022, 99, 107767. [Google Scholar] [CrossRef]
- Engel, N.; Belagiannis, V.; Dietmayer, K. Point transformer. IEEE Access 2021, 9, 134826–134840. [Google Scholar] [CrossRef]
- Li, J.; Tu, Z.; Yang, B.; Lyu, M.R.; Zhang, T. Multi-head attention with disagreement regularization. arXiv 2018, arXiv:1810.10183. [Google Scholar]
- Perez-Perez, Y.; Golparvar-Fard, M.; El-Rayes, K. Segmentation of point clouds via joint semantic and geometric features for 3D modeling of the built environment. Autom. Constr. 2021, 125, 103584. [Google Scholar] [CrossRef]
- Li, L.; Sung, M.; Dubrovina, A.; Yi, L.; Guibas, L.J. Supervised fitting of geometric primitives to 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2652–2660. [Google Scholar]
- He, Y.; Kang, S.H.; Liu, H. Curvature regularized surface reconstruction from point clouds. SIAM J. Imaging Sci. 2020, 13, 1834–1859. [Google Scholar] [CrossRef]
- Xia, S.; Chen, D.; Wang, R.; Li, J.; Zhang, X. Geometric primitives in LiDAR point clouds: A review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 685–707. [Google Scholar] [CrossRef]
- Lee, H.; Slatton, K.C.; Roth, B.E.; Cropper, W.P., Jr. Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests. Int. J. Remote Sens. 2010, 31, 117–139. [Google Scholar] [CrossRef]
- Tao, S.; Wu, F.; Guo, Q.; Wang, Y.; Li, W.; Xue, B.; Hu, X.; Li, P.; Tian, D.; Li, C.; et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories. ISPRS J. Photogramm. Remote Sens. 2015, 110, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Gossett, N.; Chen, B. Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graph. 2007, 26, 19. [Google Scholar] [CrossRef]
- Vicari, M.B.; Disney, M.; Wilkes, P.; Burt, A.; Calders, K.; Woodgate, W. Leaf and wood classification framework for terrestrial LiDAR point clouds. Methods Ecol. Evol. 2019, 10, 680–694. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Su, Y.; Hu, T.; Xu, G.; Guo, Q. Retrieving 2-D leaf angle distributions for deciduous trees from terrestrial laser scanner data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4945–4955. [Google Scholar] [CrossRef]
- Li, Y.; Su, Y.; Zhao, X.; Yang, M.; Hu, T.; Zhang, J.; Liu, J.; Liu, M.; Guo, Q. Retrieval of tree branch architecture attributes from terrestrial laser scan data using a Laplacian algorithm. Agric. For. Meteorol. 2020, 284, 107874. [Google Scholar] [CrossRef]
- Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 945–953. [Google Scholar]
- Maturana, D.; Scherer, S. Voxnet: A 3d convolutional neural network for real-time object recognition. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 922–928. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 2017, 30, 5099–5108. [Google Scholar]
- Li, B.; Zhu, S.; Lu, Y. A single stage and single view 3D point cloud reconstruction network based on DetNet. Sensors 2022, 22, 8235. [Google Scholar] [CrossRef]
- Kim, B.N.; Lee, J.S.; Shin, M.S.; Cho, S.C.; Lee, D.S. Regional cerebral perfusion abnormalities in attention deficit/hyperactivity disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2002, 252, 219–225. [Google Scholar]
- Wu, B.; Zheng, G.; Chen, Y. An improved convolution neural network-based model for classifying foliage and woody components from terrestrial laser scanning data. Remote Sens. 2020, 12, 1010. [Google Scholar] [CrossRef]
- Jin, S.; Su, Y.; Gao, S.; Wu, F.; Hu, T.; Liu, J.; Li, W.; Wang, D.; Chen, S.; Jiang, Y.; et al. Deep learning: Individual maize segmentation from terrestrial lidar data using faster R-CNN and regional growth algorithms. Front. Plant Sci. 2018, 9, 866. [Google Scholar] [CrossRef] [Green Version]
- Dutagaci, H.; Rasti, P.; Galopin, G.; Rousseau, D. ROSE-X: An annotated data set for evaluation of 3D plant organ segmentation methods. Plant Methods 2020, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Turgut, K.; Dutagaci, H.; Galopin, G.; Rousseau, D. Segmentation of structural parts of rosebush plants with 3d point-based deep learning methods. Plant Methods 2022, 18, 1–23. [Google Scholar] [CrossRef]
- Krisanski, S.; Taskhiri, M.S.; Aracil, S.G.; Herries, D.; Turner, P. Sensor agnostic semantic segmentation of structurally diverse and complex forest point clouds using deep learning. Remote Sens. 2021, 12, 1413. [Google Scholar] [CrossRef]
- Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450. Available online: https://doi.org/10.48550/arXiv.1607.06450 (accessed on 21 July 2022).
- Zhang, K.; Hao, M.; Wang, J.; de Silva, C.W.; Fu, C. Linked dynamic graph cnn: Learning on point cloud via linking hierarchical features. arXiv 2019, arXiv:1904.10014. [Google Scholar]
- Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. Pointcnn: Convolution on x-transformed points. Adv. Neural Inf. Process. Syst. 2018, 31, 820–830. [Google Scholar]
- Zhang, Z.; Hua, B.S.; Yeung, S.K. Shellnet: Efficient point cloud convolutional neural networks using concentric shells statistics. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1607–1616. [Google Scholar]
- Zhang, Z.; Hua, B.S.; Rosen, D.W.; Yeung, S.K. Rotation invariant convolutions for 3d point clouds deep learning. In Proceedings of the 2019 International Conference on 3d Vision (3DV), Quebec City, QU, Canada, 16 September 2019; pp. 204–213. [Google Scholar]
Evaluation | Category | Pointnet | Pointnet++ | DGCNN | PointCNN | ShellNet | RIConv | Point Transformer | Ours |
---|---|---|---|---|---|---|---|---|---|
IoU | Flower | 15.83 | 74.12 | 8.34 | 53.56 | 49.36 | 54.12 | 80.93 | 83.32 |
Leaf | 82.56 | 95.36 | 84.17 | 91.76 | 89.69 | 88.96 | 91.76 | 94.36 | |
Stem | 5.27 | 77.69 | 24.97 | 70.89 | 54.78 | 35.79 | 74.99 | 78.96 | |
MIoU | MIou | 34.55 | 82.39 | 39.16 | 72.14 | 64.61 | 60.79 | 82.56 | 85.52 |
Evaluation | Category | Point Transformer | Without RPC | Without Separation_Loss | Ours |
---|---|---|---|---|---|
IoU | Flower | 80.93 | 83.10 | 82.28 | 83.32 |
Leaf | 91.76 | 93.03 | 92.89 | 94.36 | |
Stem | 74.99 | 77.64 | 76.71 | 78.96 | |
MIoU | MIou | 82.56 | 84.29 | 83.96 | 85.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Guo, C. MASPC_Transform: A Plant Point Cloud Segmentation Network Based on Multi-Head Attention Separation and Position Code. Sensors 2022, 22, 9225. https://doi.org/10.3390/s22239225
Li B, Guo C. MASPC_Transform: A Plant Point Cloud Segmentation Network Based on Multi-Head Attention Separation and Position Code. Sensors. 2022; 22(23):9225. https://doi.org/10.3390/s22239225
Chicago/Turabian StyleLi, Bin, and Chenhua Guo. 2022. "MASPC_Transform: A Plant Point Cloud Segmentation Network Based on Multi-Head Attention Separation and Position Code" Sensors 22, no. 23: 9225. https://doi.org/10.3390/s22239225
APA StyleLi, B., & Guo, C. (2022). MASPC_Transform: A Plant Point Cloud Segmentation Network Based on Multi-Head Attention Separation and Position Code. Sensors, 22(23), 9225. https://doi.org/10.3390/s22239225