A Methodology for Abstracting the Physical Layer of Direct V2X Communications Technologies
Abstract
:1. Introduction
1.1. Related Work
1.2. Contribution and Innovation of the Paper
1.3. Paper Organization
2. V2X Technologies
2.1. IEEE 802.11p
2.2. C-V2X Sidelink
3. Physical Layer Abstraction Methodology
3.1. PER vs. SINR Curve Approximation
3.2. Maximum Throughput
3.3. Effective Throughput
3.4. Best Fit Implementation Loss
3.5. SINR Threshold for the Generic Settings
4. Validation of the Proposed Methodology
4.1. Derivation of the PER Value for the Step Function Approximation
4.2. Implementation Loss in the Considered Scenarios
4.3. Validating Network Level Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bazzi, A.; Berthet, A.O.; Campolo, C.; Masini, B.M.; Molinaro, A.; Zanella, A. On the Design of Sidelink for Cellular V2X: A Literature Review and Outlook for Future. IEEE Access 2021, 9, 97953–97980. [Google Scholar] [CrossRef]
- Alalewi, A.; Dayoub, I.; Cherkaoui, S. On 5G-V2X Use Cases and Enabling Technologies: A Comprehensive Survey. IEEE Access 2021, 9, 107710–107737. [Google Scholar] [CrossRef]
- Soto, I.; Calderon, M.; Amador, O.; Urueña, M. A survey on road safety and traffic efficiency vehicular applications based on C-V2X technologies. Veh. Commun. 2022, 33, 100428. [Google Scholar] [CrossRef]
- Huawei, H. DMRS Enhancement of V2V. Technical Report R1-160284, 3rd Generation Partnership Project (3GPP), 2016. 3GPP TSG RAN WG1 Meeting #84, St Julian’s, Malta. Available online: https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84/Docs/R1-160284.zip (accessed on 22 November 2022).
- Anwar, W.; Dev, S.; Kumar, A.; Franchi, N.; Fettweis, G. PHY Abstraction Techniques for V2X Enabling Technologies: Modeling and Analysis. IEEE Trans. Veh. Technol. 2021, 70, 1501–1517. [Google Scholar] [CrossRef]
- Martinez, V.; Berens, F. Survey on CAM Statistics. Technical Report (TR) 2052, CAR 2 CAR Communication Consortium. Version 1.0.1. 2018. Available online: https://www.car-2-car.org/fileadmin/documents/General_Documents/C2CCC_TR_2052_Survey_on_CAM_statistics.pdf (accessed on 22 November 2022).
- Sepulcre, M.; Gozalvez, J.; Coll-Perales, B. Why 6 Mbps is Not (Always) the Optimum Data Rate for Beaconing in Vehicular Networks. IEEE Trans. Mob. Comput. 2017, 16, 3568–3579. [Google Scholar] [CrossRef]
- Wang, X. C-V2X Performance under Aperiodic Messages of Variable Size. Available online: https://www.qualcomm.com/news/onq/2021/02/16/c-v2x-performance-under-aperiodic-messages-variable-size (accessed on 22 November 2022).
- Wang, L.; Iida, R.; Wyglinski, A.M. Vehicular network simulation environment via discrete event system modeling. IEEE Access 2019, 7, 87246–87264. [Google Scholar] [CrossRef]
- Gonzalez Martín, M.; Sepulcre, M.; Molina-Masegosa, R.; Gozalvez, J. Analytical models of the performance of C-V2X mode 4 vehicular communications. IEEE Trans. Veh. Technol. 2018, 68, 1155–1166. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Di Marco, P.; Valentini, R.; Santucci, F. Analytical Modeling of Multiple Access Interference in C-V2X Sidelink Communications. In Proceedings of the 2022 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Athens, Greece, 5–8 September 2022; pp. 215–220. [Google Scholar] [CrossRef]
- Sepulcre, M.; Gonzalez-Martín, M.; Gozalvez, J.; Molina-Masegosa, R.; Coll-Perales, B. Analytical models of the performance of IEEE 802.11 p vehicle to vehicle communications. IEEE Trans. Veh. Technol. 2022, 71, 713–724. [Google Scholar] [CrossRef]
- Paier, A.; Faetani, D.; Mecklenbräuker, C.F. Performance evaluation of IEEE 802.11 p physical layer infrastructure-to-vehicle real-world measurements. In Proceedings of the 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), Rome, Italy, 7–10 November 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Cabezas, X.A.F.; Paredes, M.C.P.; Urquiza-Aguiar, L.F.; Reinoso-Chisaguano, D.J. PhySim-11p: Simulation model for IEEE 802.11 p physical layer in MATLAB. Softw. X 2020, 12, 100580. [Google Scholar] [CrossRef]
- Hu, J.; Chen, S.; Zhao, L.; Li, Y.; Fang, J.; Li, B.; Shi, Y. Link level performance comparison between LTE V2X and DSRC. J. Commun. Inf. Netw. 2017, 2, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Mannoni, V.; Berg, V.; Sesia, S.; Perraud, E. A Comparison of the V2X Communication Systems: ITS-G5 and C-V2X. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Roux, P.; Sesia, S.; Mannoni, V.; Perraud, E. System level analysis for ITS-G5 and LTE-V2X performance comparison. In Proceedings of the 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Monterey, CA, USA, 4–7 November 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Anwar, W.; Franchi, N.; Fettweis, G. Physical layer evaluation of V2X communications technologies: 5G NR-V2X, LTE-V2X, IEEE 802.11 bd, and IEEE 802.11 p. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Anwar, W.; Kulkarni, K.; Augustin, T.R.; Franchi, N.; Fettweis, G. PHY Abstraction Techniques for IEEE 802.11 p and LTE-V2V: Applications and Analysis. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Wang, D.; Sattiraju, R.R.; Qiu, A.; Partani, S.; Schotten, H.D. Methodologies of Link-Level Simulator and System-Level Simulator for C-V2X Communication. In Proceedings of the 2019 IEEE 2nd International Conference on Electronics and Communication Engineering (ICECE), Xi’an, China, 9–11 December 2019; pp. 178–184. [Google Scholar] [CrossRef] [Green Version]
- Mosavat Jahromi, H.; Li, Y.; Cai, L.; Lu, L. NC-MAC: Network coding-based distributed MAC protocol for reliable beacon broadcasting in V2X. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Z.; Al-Dubai, A.Y.; Min, G.; Li, J.; Hawbani, A.; Zomaya, A.Y. A Novel Prediction-Based Temporal Graph Routing Algorithm for Software-Defined Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 13275–13290. [Google Scholar] [CrossRef]
- Vukadinovic, V.; Bakowski, K.; Marsch, P.; Garcia, I.D.; Xu, H.; Sybis, M.; Sroka, P.; Wesolowski, K.; Lister, D.; Thibault, I. 3GPP C-V2X and IEEE 802.11p for Vehicle-to-Vehicle communications in highway platooning scenarios. Ad Hoc Netw. 2018, 74, 17–29. [Google Scholar] [CrossRef]
- Abdelgader, A.M.; Lenan, W. The physical layer of the IEEE 802.11 p WAVE communication standard: The specifications and challenges. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 22–24 October 2014; Volume 2, pp. 22–698. Available online: http://www.iaeng.org/publication/WCECS2014/WCECS2014_pp691-698.pdf (accessed on 22 November 2022).
- Harigovindan, V.P.; Babu, A.V.; Jacob, L. Ensuring fair access in IEEE 802.11 p-based vehicle-to-infrastructure networks. EURASIP J. Wirel. Commun. Netw. 2012, 2012, 1–17. [Google Scholar] [CrossRef] [Green Version]
- ETSI. Intelligent Transport Systems (ITS); ITS-G5 Access Layer Specification for Intelligent Transport Systems Operating in the 5 GHz Frequency Band. European Standard (EN) 302 663, European Telecommunications Standards Institute (ETSI). Version 1.3.1.. 2020. Available online: https://www.etsi.org/deliver/etsi_en/302600_302699/302663/01.03.01_60/en_302663v010301p.pdf (accessed on 22 November 2022).
- Bazzi, A.; Masini, B.M.; Zanella, A.; Thibault, I. On the performance of IEEE 802.11p and LTE-V2V for the Cooperative Awareness of Connected Vehicles. IEEE Trans. Veh. Technol. 2017, 66, 10419–10432. [Google Scholar] [CrossRef]
- 3GPP. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol Specification. Technical Specification (TS) 36.331, 3rd Generation Partnership Project (3GPP). Version 14.6.2. 2018. Available online: https://www.3gpp.org/ftp//Specs/archive/36_series/36.331/36331-e62.zip (accessed on 22 November 2022).
- 3GPP. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) System Scenarios. Technical Specification (TS) 36.942, 3rd Generation Partnership Project (3GPP). Version 17.0.0. 2022. Available online: https://www.3gpp.org/ftp/Specs/archive/36_series/36.942/36942-h00.zip (accessed on 22 November 2022).
- Todisco, V.; Bartoletti, S.; Campolo, C.; Molinaro, A.; Berthet, A.O.; Bazzi, A. Performance Analysis of Sidelink 5G-V2X Mode 2 Through an Open-Source Simulator. IEEE Access 2021, 14. [Google Scholar] [CrossRef]
- ETSI. Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service. European Standard (EN) 302 637-2 Draft, European Telecommunications Standards Institute (ETSI). Version 1.4.1; 2019; Available online: https://www.etsi.org/deliver/etsi_EN/302600_302699/30263702/01.04.01_30/en_30263702v010401v.pdf (accessed on 22 November 2022).
Scenario | |
Road layout | Highway, 3 + 3 or 6 + 6 lanes, 4 m width |
(Density, Average speed) [vehicles/km, km/h] | (100, 96) and (400, 56) |
Power and propagation | |
Channels and bandwidth | ITS 10 MHz bands at 5.9 GHz |
Transmission power density | 13 dBm/MHz |
Antenna gain (tx and rx) and noise figure | 3 dBi and 6 dB |
Propagation model | WINNER+, Scenario B1 |
Shadowing | Variance 3 dB, decorr. dist. 25 m |
Data traffic | |
Packet size and generation rule | bytes and following the rules in [31] |
IEEE 802.11p settings | |
MCS | 2 (QPSK, CR ) |
Maximum contention window | 15 |
Arbitration inter-frame space | 110 s |
Sensing threshold for known and unknown signals | −85 dBm and −65 dBm |
Sidelink LTE-V2X settings | |
MCS | 7 (QPSK, CR ) |
Number and size of subchannels and | 5 and 10 PRBs |
Control channel configuration | Adjacent |
Retransmissions | Disabled |
Keep probability | 0.5 |
Min. and Max. time for the allocation, and | 1 ms and 100 ms |
IEEE 802.11p | LTE-V2X | |||||||
---|---|---|---|---|---|---|---|---|
MCS 2, 350 Bytes | MCS 4, 550 Bytes | MCS 7, 350 Bytes | MCS 11, 550 Bytes | |||||
100 v/km | 400 v/km | 100 v/km | 400 v/km | 100 v/km | 400 v/km | 100 v/km | 400 v/km | |
0.1 | 0.0621 | 0.0430 | 0.0812 | 0.0702 | 0.0586 | 0.0442 | 0.0668 | 0.0397 |
0.3 | 0.0184 | 0.0157 | 0.0278 | 0.0254 | 0.0215 | 0.0166 | 0.0237 | 0.0130 |
0.4 | 0.0086 | 0.0055 | 0.0149 | 0.0130 | 0.0125 | 0.0066 | 0.0144 | 0.0058 |
0.5 | 0.0079 | 0.0039 | 0.0106 | 0.0073 | 0.0107 | 0.0028 | 0.0077 | 0.0050 |
0.6 | 0.0184 | 0.0147 | 0.0158 | 0.0112 | 0.0129 | 0.0047 | 0.0133 | 0.0099 |
0.7 | 0.0307 | 0.0194 | 0.0275 | 0.0230 | 0.0212 | 0.0115 | 0.0227 | 0.0189 |
0.9 | 0.0372 | 0.0257 | 0.0691 | 0.0521 | 0.0470 | 0.0296 | 0.0289 | 0.0334 |
Scenarios | N | MCS (802.11p) and (LTE) | [bytes] | RMSE [Mb/s] | |
---|---|---|---|---|---|
Crossing NLOS | 7 | (0, 2, 4) and (4,5,7,11) | 350 | 0.25 | 0.82 |
Highway LOS | 13 | (0, 2, 4) and (4 8,11) | 350, 550 | 0.37 | 0.98 |
Highway NLOS | 13 | (0, 2, 4) and (4 8, 11) | 350, 550 | 0.24 | 0.80 |
Urban LOS | 7 | (0, 2, 4) and (4,5,7,11) | 350, 550 | 0.32 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Bartoletti, S.; Martinez, V.; Bazzi, A. A Methodology for Abstracting the Physical Layer of Direct V2X Communications Technologies. Sensors 2022, 22, 9330. https://doi.org/10.3390/s22239330
Wu Z, Bartoletti S, Martinez V, Bazzi A. A Methodology for Abstracting the Physical Layer of Direct V2X Communications Technologies. Sensors. 2022; 22(23):9330. https://doi.org/10.3390/s22239330
Chicago/Turabian StyleWu, Zhuofei, Stefania Bartoletti, Vincent Martinez, and Alessandro Bazzi. 2022. "A Methodology for Abstracting the Physical Layer of Direct V2X Communications Technologies" Sensors 22, no. 23: 9330. https://doi.org/10.3390/s22239330