Rapid Localization and Mapping Method Based on Adaptive Particle Filters †
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Features Extraction and Local Maps Creation
3.2. Localization
- Particles generation
- Motion update
- Measurement update
- Resampling
- Evaluation
4. Results and Discussion
4.1. Experiments
4.2. Discussion
- Parameters discussion:
- Discussion on Kitti and Pandaset accuracies:
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging Technologies. IEEE Access 2020, 8, 58443–58469. [Google Scholar] [CrossRef]
- Kuutti, S.; Fallah, S.; Katsaros, K.; Dianati, M.; Mccullough, F.; Mouzakitis, A. A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications. IEEE Internet Things J. 2018, 5, 829–846. [Google Scholar] [CrossRef]
- Karaim, M.; Elsheikh, M.; Noureldin, A. GNSS Error Sources. Multifunctional Operation and Application of GPS; Rustamov, R.B., Hashimov, A.M., Eds.; InTech: London, UK, 2018; ISBN 978-1-78923-214-1. [Google Scholar] [CrossRef] [Green Version]
- Nerem, R.S.; Larson, K.M.; Eos, Transactions American Geophysical Union. Global Positioning System, Theory and Practice, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 82. [Google Scholar] [CrossRef]
- Onyekpe, U.; Palade, V.; Kanarachos, S. Learning to localise automated vehicles in challenging environments using inertial navigation systems (Ins). Appl. Sci. 2021, 11, 1270. [Google Scholar] [CrossRef]
- Onyekpe, U.; Kanarachos, S.; Palade, V.; Christopoulos, S.R.G. Vehicular localisation at high and low estimation rates during gnss outages: A deep learning approach. In Advances in Intelligent Systems and Computing; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2020; Volume 1232, pp. 229–248. [Google Scholar] [CrossRef]
- Onyekpe, U.; Palade, V.; Kanarachos, S.; Christopoulos, S.R.G. Learning Uncertainties in Wheel Odometry for Vehicular Localisation in GNSS Deprived Environments. In Proceedings of the 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020, Miami, FL, USA, 14–17 December 2020; pp. 741–746. [Google Scholar] [CrossRef]
- Onyekpe, U.; Palade, V.; Herath, A.; Kanarachos, S.; Fitzpatrick, M.E. WhONet: Wheel Odometry neural Network for vehicular localisation in GNSS-deprived environments. Eng. Appl. Artif. Intell. 2021, 105, 104421. [Google Scholar] [CrossRef]
- Onyekpe, U.; Palade, V.; Kanarachos, S.; Christopoulos, S.-R.G. A Quaternion Gated Recurrent Unit Neural Network for Sensor Fusion. Information 2021, 12, 117. [Google Scholar] [CrossRef]
- Fang, W.; Jiang, J.; Lu, S.; Gong, Y.; Tao, Y.; Tang, Y.; Yan, P.; Luo, H.; Liu, J. A LSTM Algorithm Estimating Pseudo Measurements for Aiding INS during GNSS Signal Outages. Remote Sens. 2020, 12, 256. [Google Scholar] [CrossRef]
- Dai, H.-F.; Bian, H.-W.; Wang, R.-Y.; Ma, H. An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network. Def. Technol. 2020, 16, 334–340. [Google Scholar] [CrossRef]
- Onyekpe, U.; Szkolnik, A.; Palade, V.; Kanarachos, S.; Fitzpatrick, M.E. R-WhONet: Recalibrated Wheel Odometry Neural Network for Vehicular Positioning Using Transfer Learning. arXiv 2022, arXiv:2209.05877. [Google Scholar]
- Onyekpe, U.; Lu, Y.; Apostolopoulou, E.; Palade, V.; Eyo, U.E.; Kanarachos, S. Explainable Machine Learning for Autonomous Vehicle Positioning Using SHAP. In Explainable AI: Foundations, Methodologies and Applications; Springer: Cham, Switzerland, 2022; Volume 232, pp. 157–183. [Google Scholar] [CrossRef]
- Thrun, S. Probabilistic robotics. Commun. ACM 2002, 45, 52–57. [Google Scholar] [CrossRef]
- Sharath, S. Particle Filter: A Hero in the World of Non-Linearity and Non-Gaussian, Medium. Available online: https://towardsdatascience.com/particle-filter-a-hero-in-the-world-of-non-linearity-and-non-gaussian-6d8947f4a3dc (accessed on 25 April 2022).
- Kunsch, H.R. Particle filters. Bernoulli 2013, 19, 1391–1403. [Google Scholar] [CrossRef] [Green Version]
- Godsill, S.J.; Doucet, A. Particle Filtering in Signal Processing. EURASIP J. Appl. Signal Process. 2004, 2004, 2339–2395. [Google Scholar]
- Sefati, M.; Daum, M.; Sondermann, B.; Kreiskother, K.D.; Kampker, A. Improving vehicle localization using semantic and ole-like landmarks. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 13–19. [Google Scholar] [CrossRef]
- Kummerle, J.; Sons, M.; Poggenhans, F.; Kuhner, T.; Lauer, M.; Stiller, C. Accurate and efficient self-localization on roads using basic geometric primitives. In Proceedings of the IEEE International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; pp. 5965–5971. [Google Scholar] [CrossRef]
- Weng, L.; Yang, M.; Guo, L.; Wang, B.; Wang, C. Pole-based real-time localization for autonomous driving in congested urban scenarios. In Proceedings of the 2018 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2018, Kandima, Maldives, 1–5 August 2019; pp. 96–101. [Google Scholar] [CrossRef]
- Schaefer, A.; Büscher, D.; Vertens, J.; Luft, L.; Burgard, W. Long-term vehicle localization in urban environments based on pole landmarks extracted from 3-D LiDAR scans. Robot. Auton. Syst. 2021, 136, 103709. [Google Scholar] [CrossRef]
- Yu, H.; Zhen, W.; Yang, W.; Scherer, S. Line-Based 2-D-3-D Registration and Camera Localization in Structured Environments. IEEE Trans. Instrum. Meas. 2020, 69, 8962–8972. [Google Scholar] [CrossRef]
- Segal, A.V.; Haehnel, D.; Thrun, S. Generalized-ICP (probabilistic ICP tutorial). Robot. Sci. Syst. 2009, 2, 435. [Google Scholar]
- Kim, D.; Chung, T.; Yi, K. Lane map building and localization for automated driving using 2D laser rangefinder. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Republic of Korea, 28 June–1 July 2015; Volume 4, pp. 680–685. [Google Scholar] [CrossRef]
- Du, S.; Xu, Y.; Wan, T.; Hu, H.; Zhang, S.; Xu, G.; Zhang, X. Robust iterative closest point algorithm based on global reference point for rotation invariant registration. PLoS ONE 2017, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Biber, P. The Normal Distributions Transform: A New Approach to Laser Scan Matching. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 27–31 October 2003; pp. 2743–2748. [Google Scholar] [CrossRef]
- Huang, X.; Mei, G.; Zhang, J.; Abbas, R. A comprehensive survey on point cloud registration. arXiv 2021, arXiv:2103.02690. [Google Scholar]
- Charroud, A.; Yahyaouy, A.; El Moutaouakil, K.; Onyekpe, U. Localisation and Mapping of Self-Driving Vehicles Based on Fuzzy K-Means Clustering: A Non-Semantic Approach. In Proceedings of the 2022 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 18–20 May 2022. [Google Scholar] [CrossRef]
- Carlevaris-Bianco, N.; Ushani, A.K.; Eustice, R.M. University of Michigan North Campus long-term vision and LiDAR dataset. Int. J. Robot. Res. 2016, 35, 1023–1035. [Google Scholar] [CrossRef]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Im, J.H.; Im, S.H.; Jee, G.I. Extended line map-based precise vehicle localization using 3D LIDAR. Sensors 2018, 18, 3179. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Mur-Artal, R.; Montiel JM, M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Gálvez-López, D.; Tardós, J.D. Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 2012, 28, 1188–1197. [Google Scholar] [CrossRef]
- Hungar, C.; Brakemeier, S.; Jürgens, S.; Köster, F. GRAIL: A Gradients-of-Intensities-based Local Descriptor for Map-based Localization Using LiDAR Sensors. In Proceedings of the2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019. [Google Scholar]
- Tola, E.; Lepetit, V.; Fua, P. DAISY: An efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 815–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Wan, G.; Zhou, Y.; Fu, X.; Yuan, P.; Song, S. DeepICP: An end-to-end deep neural network for point cloud registration. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 12–21. [Google Scholar] [CrossRef]
- Beltrán, J.; Guindel, C.; Moreno, F.M.; Cruzado, D.; García, F.; De La Escalera, A. BirdNet: A 3D Object Detection Framework from LiDAR Information. In Proceedings of the IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC 2018, Proceedings, Maui, HI, USA, 4–7 November 2018; pp. 3517–3523. [Google Scholar] [CrossRef] [Green Version]
- Barrera, A.; Guindel, C.; Beltrán, J.; García, F. BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020, Rhodes, Greece, 20–23 September 2020. [Google Scholar] [CrossRef]
- Charroud, A.; Moutaouakil, K.E.; Yahyaouy, A. Fast and Accurate Localization and Mapping Method for Self-Driving Vehicles Based on a Modified Clustering Particle Filter. Multimed. Tools Appl. 2022. [Google Scholar] [CrossRef]
- Xiao, P.; Shao, Z.; Hao, S.; Zhang, Z.; Chai, X.; Jiao, J.; Li, Z.; Wu, J.; Sun, K.; Jiang, K.; et al. PandaSet: Advanced Sensor Suite Dataset for Autonomous Driving. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 3095–3101. [Google Scholar] [CrossRef]
- Charroud, A. AnasCHARROUD/adaptative_particle_filter: Python Implementation of Our Paper ‘Rapid Localization and Mapping Method Based on Adaptive Particle Filters’. GitHub. Available online: https://github.com/AnasCHARROUD/Adaptative_Particle_Filter (accessed on 11 November 2022).
Clustering Method | Time Cost |
---|---|
Growing neural gas | 01:24 |
KMeans | 01:38 |
Fuzzy K-means | 00:43 |
Hierarchical clustering | 01:07 |
Gaussian mixture model | 00:49 |
Self-organizing maps | 02:06 |
Agglomerative clustering | 01:18 |
Particle swarm optimized clustering | 00:52 |
Category | Seq | frames no | tFeat (s) | tloc (s) | ∆pos (m) | ∆lat (m) | ∆lon (m) | ∆ang (°) | RMSEpos (m) | RMSEang (°) |
---|---|---|---|---|---|---|---|---|---|---|
City | 0001 | 108 | 00:34 | 00:01 | 0.07 | 0.01 | 0.06 | 0.012 | 0.08 | 0.014 |
Residence | 0035 | 131 | 00:43 | 00:02 | 0.038 | 0.019 | 0.02 | 0.09 | 0.053 | 0.18 |
Road | 0027 | 188 | 01:08 | 00:02 | 0.15 | 0.03 | 0.14 | 0.01 | 0.17 | 0.006 |
Campus | 0034 | 49 | 00:16 | 00:01 | 0.0009 | 0.0006 | 0.0005 | 0.0014 | 0.001 | 0.001 |
Person | 0053 | 68 | 00:23 | 00:01 | 0.0001 | 0.0001 | 0.0001 | 0.001 | 0.0007 | 0.0002 |
Methods | ∆pos(m) | RMSEpos (m) | ∆lat(m) | (m) | ∆lon(m) | (m) | ∆ang(°) | (°) | RMSEang(°) |
---|---|---|---|---|---|---|---|---|---|
Kümmerle et al. [19] | 0.12 | — | 0.07 | — | 0.08 | — | 0.33 | — | — |
Weng et al. [20] | — | — | — | 0.082 | — | 0.164 | — | 0.329 | — |
Sefati et al. [18] | — | 0.24 | — | — | — | — | — | — | 0.68 |
A. Schaefer et al. [21] | 0.096 | 0.111 | 0.061 | 0.075 | 0.060 | 0.067 | 0.133 | 0.188 | 0.214 |
Charroud. A et al. [28] | 0.12 | 0.141 | 0.059 | 0.09 | 0.08 | 0.05 | 0.043 | 0.078 | 0.057 |
Ours | 0.101 | 0.12 | 0.064 | 0.035 | 0.06 | 0.087 | 0.043 | 0.075 | 0.075 |
Seq | frames no | tFeat (s) | tloc (s) | ∆pos (m) | ∆lat (m) | ∆lon (m) | RMSEpos (m) |
---|---|---|---|---|---|---|---|
100 | 80 | 00:01 | 00:01 | 0.18 | 0.07 | 0.16 | 0.21 |
109 | 80 | 00:01 | 00:01 | 0.22 | 0.07 | 0.20 | 0.23 |
117 | 80 | 00:03 | 00:01 | 0.16 | 0.06 | 0.13 | 0.19 |
139 | 80 | 00:01 | 00:01 | 0.22 | 0.03 | 0.21 | 0.29 |
158 | 80 | 00:01 | 00:01 | 0.05 | 0.03 | 0.03 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charroud, A.; El Moutaouakil, K.; Yahyaouy, A.; Onyekpe, U.; Palade, V.; Huda, M.N. Rapid Localization and Mapping Method Based on Adaptive Particle Filters. Sensors 2022, 22, 9439. https://doi.org/10.3390/s22239439
Charroud A, El Moutaouakil K, Yahyaouy A, Onyekpe U, Palade V, Huda MN. Rapid Localization and Mapping Method Based on Adaptive Particle Filters. Sensors. 2022; 22(23):9439. https://doi.org/10.3390/s22239439
Chicago/Turabian StyleCharroud, Anas, Karim El Moutaouakil, Ali Yahyaouy, Uche Onyekpe, Vasile Palade, and Md Nazmul Huda. 2022. "Rapid Localization and Mapping Method Based on Adaptive Particle Filters" Sensors 22, no. 23: 9439. https://doi.org/10.3390/s22239439
APA StyleCharroud, A., El Moutaouakil, K., Yahyaouy, A., Onyekpe, U., Palade, V., & Huda, M. N. (2022). Rapid Localization and Mapping Method Based on Adaptive Particle Filters. Sensors, 22(23), 9439. https://doi.org/10.3390/s22239439