Transfer Learning Strategy in Neural Network Application for Underwater Visible Light Communication System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Setup
2.2. Carrierless Amplitude and Phase (CAP) Modulation
2.3. LMS/Volterra Post-Equalization
2.4. DNN Post-Equalization
2.5. Transfer Learning (TL) Strategy in NN-Based Post-Equalizer
2.6. AWGN Simulation
2.7. Ring–Ring Diagram
3. Results
3.1. AWGN Channel Simulation
3.2. Underwater Experiment Result
3.2.1. Exhaustive Training Strategy and Single Model Generalizability
3.2.2. Transfer Learning Strategy
3.3. Comparison between Two Strategies in Training Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible Light Communication in 6G: Advances, Challenges, and Prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Schirripa Spagnolo, G.; Cozzella, L.; Leccese, F. Underwater Optical Wireless Communications: Overview. Sensors 2020, 20, 2261. [Google Scholar] [CrossRef] [PubMed]
- Che, X.; Wells, I.; Dickers, G.; Kear, P.; Gong, X. Re-Evaluation of RF Electromagnetic Communication in Underwater Sensor Networks. IEEE Commun. Mag. 2010, 48, 143–151. [Google Scholar] [CrossRef]
- Vegni, A.M.; Hammouda, M.; Loscrí, V. A VLC-Based Footprinting Localization Algorithm for Internet of Underwater Things in 6G Networks. In Proceedings of the 2021 17th International Symposium on Wireless Communication Systems (ISWCS), Berlin, Germany, 6–9 September 2021; pp. 1–6. [Google Scholar]
- Shen, C. Laser-Based High Bit-Rate Visible Light Communications and Underwater Optical Wireless Network. In Proceedings of the 2020 Photonics North (PN), Niagara Falls, ON, Canada, 26–28 May 2020; p. 1. [Google Scholar]
- Sawa, T.; Nishimura, N.; Ito, S. Wireless Optical Ethernet Modem for Underwater Vehicles. In Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018; pp. 1–4. [Google Scholar]
- Xu, J.; Sun, B.; Lyu, W.; Kong, M.; Sarwar, R.; Han, J.; Zhang, W.; Deng, N. Underwater Fiber–Wireless Communication with a Passive Front End. Opt. Commun. 2017, 402, 260–264. [Google Scholar] [CrossRef]
- Ariyanti, S.; Suryanegara, M. Visible Light Communication (VLC) for 6G Technology: The Potency and Research Challenges. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; pp. 490–493. [Google Scholar]
- Shi, J.; Zhu, X.; Wang, F.; Zou, P.; Zhou, Y.; Liu, J.; Jiang, F.; Chi, N. Net Data Rate of 14.6 Gbit/s Underwater VLC Utilizing Silicon Substrate Common-Anode Five Primary Colors LED. In Proceedings of the Optical Fiber Communication Conference (OFC) 2019, San Diego, CA, USA, 3 March 2019; Optica Publishing Group: Washington, DC, USA, 2019; p. M3I.5. [Google Scholar]
- Hu, F.; Li, G.; Zou, P.; Hu, J.; Chen, S.; Liu, Q.; Zhang, J.; Jiang, F.; Wang, S.; Chi, N. 20.09-Gbit/s Underwater WDM-VLC Transmission Based on a Single Si/GaAs-Substrate Multichromatic LED Array Chip. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2020; pp. 1–3. [Google Scholar]
- Lee, C.; Zhang, C.; Cantore, M.; Farrell, R.; Oh, S.H.; Margalith, T.; Speck, J.S.; Nakamura, S.; Bowers, J.E.; DenBaars, S.P. 2.6 GHz High-Speed Visible Light Communication of 450 Nm GaN Laser Diode by Direct Modulation. In Proceedings of the 2015 IEEE Summer Topicals Meeting Series (SUM), Nassau, Bahamas, 13–15 July 2015; pp. 112–113. [Google Scholar]
- Kang, C.H.; Trichili, A.; Alkhazragi, O.; Zhang, H.; Subedi, R.C.; Guo, Y.; Mitra, S.; Shen, C.; Roqan, I.S.; Ng, T.K.; et al. Ultraviolet-to-Blue Color-Converting Scintillating-Fibers Photoreceiver for 375-Nm Laser-Based Underwater Wireless Optical Communication. Opt. Express 2019, 27, 30450–30461. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Chen, F.; Xu, Z.; Zhang, Y.; Liu, A.X.; Zhang, C. Multi-Access Channel Based on Quantum Detection in Wireless Optical Communication. Entropy 2022, 24, 1044. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Z.; Shi, J.; Wang, Y.; Chi, N. 1.6 Gbit/s Phosphorescent White LED Based VLC Transmission Using a Cascaded Pre-Equalization Circuit and a Differential Outputs PIN Receiver. Opt. Express 2015, 23, 22034–22042. [Google Scholar] [CrossRef]
- Khadr, M.H.; Abd El Aziz, A.; Fayed, H.A.; Aly, M. Bandwidth and BER Improvement Employing a Pre-Equalization Circuit with White LED Arrays in a MISO VLC System. Appl. Sci. 2019, 9, 986. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Nie, Y.; Liu, M.; Du, Y.; Liu, R.; Wei, Z.; Fu, H.Y.; Zhu, B. Digital Pre-Equalization for OFDM-Based VLC Systems: Centralized or Distributed? IEEE Photonics Technol. Lett. 2021, 33, 1081–1084. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, L.; Huang, X.; Shi, J.; Chi, N. 8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Lu, X.; Qiao, L.; Zhou, Y.; Yu, W.; Chi, N. An I-Q-Time 3-Dimensional Post-Equalization Algorithm Based on DBSCAN of Machine Learning in CAP VLC System. Opt. Commun. 2019, 430, 299–303. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, L.; Huang, X.; Shi, J.; Chi, N. Enhanced Performance of a High-Speed WDM CAP64 VLC System Employing Volterra Series-Based Nonlinear Equalizer. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Cao, B.; Yuan, K.; Li, H.; Duan, S.; Li, Y.; Ouyang, Y. The Performance Improvement of VLC-OFDM System Based on Reservoir Computing. Photonics 2022, 9, 185. [Google Scholar] [CrossRef]
- Yesilkaya, A.; Karatalay, O.; Ogrenci, A.S.; Panayirci, E. Channel Estimation for Visible Light Communications Using Neural Networks. In Proceedings of the 2016 IEEE International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 320–325. [Google Scholar]
- He, W.; Zhang, M.; Wang, X.; Zhou, H.; Ren, X. Design and Implementation of Adaptive Filtering Algorithm for VLC Based on Convolutional Neural Network. In Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 6–9 December 2019; pp. 317–321. [Google Scholar]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A Survey of Underwater Optical Wireless Communications. IEEE Commun. Surv. Tutor. 2017, 19, 204–238. [Google Scholar] [CrossRef]
- Luo, X.; Yang, H. RNN-Based Sequence to Sequence Decoder for Run-Length Limited Codes in Visible Light Communication. Sensors 2022, 22, 4843. [Google Scholar] [CrossRef]
- Lu, X.; Lu, C.; Yu, W.; Qiao, L.; Liang, S.; Lau, A.P.T.; Chi, N. Memory-Controlled Deep LSTM Neural Network Post-Equalizer Used in High-Speed PAM VLC System. Opt. Express 2019, 27, 7822–7833. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, X.; Liu, X.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, X.; Wang, X.; Wang, X.; Xu, H.; et al. Bi-Directional Gated Recurrent Unit Neural Network Based Nonlinear Equalizer for Coherent Optical Communication System. Opt. Express 2021, 29, 5923–5933. [Google Scholar] [CrossRef]
- Fu, Y.; Kong, D.; Xin, H.; Jia, S.; Zhang, K.; Bi, M.; Hu, W.; Hu, H. Piecewise Linear Equalizer for DML Based PAM-4 Signal Transmission Over a Dispersion Uncompensated Link. J. Light. Technol. 2020, 38, 654–660. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Niu, W.; Zhao, Y.; Zhang, J.; Chi, N.; Li, Z. Adaptive Deep-Learning Equalizer Based on Constellation Partitioning Scheme with Reduced Computational Complexity in UVLC System. Opt. Express 2021, 29, 21773–21782. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, P.; Yu, W.; Chi, N. Two Tributaries Heterogeneous Neural Network Based Channel Emulator for Underwater Visible Light Communication Systems. Opt. Express 2019, 27, 22532–22541. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Ye, H.; Li, G.Y.; Juang, B.-H. Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wirel. Commun. Lett. 2017, 7, 114–117. [Google Scholar] [CrossRef]
- Gutema, T.Z.; Haas, H.; Popoola, W.O. WDM Based 10.8 Gbps Visible Light Communication with Probabilistic Shaping. J. Light. Technol. 2022, 40, 5062–5069. [Google Scholar] [CrossRef]
- 8-Gbit/s Visible Light Communication (VLC) Based on 443-Nm Superluminescent Diode and Bit-Loading Discrete-Multiple-Tone (DMT) Modulation Scheme. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11307/2543983/38-Gbit-s-visible-light-communication-VLC-based-on-443/10.1117/12.2543983.short (accessed on 8 October 2022).
- Issaoui, L.; Cho, S.; Chun, H. High CRI RGB Laser Lighting With 11-Gb/s WDM Link Using Off-the-Shelf Phosphor Plate. IEEE Photonics Technol. Lett. 2022, 34, 97–100. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, W.; Yang, Y.; Deng, X.; Liu, M.; Chen, C. Pairwise Coded MCAP with Chaotic Dual-Mode Index Modulation for Secure Bandlimited VLC Systems. Photonics 2022, 9, 141. [Google Scholar] [CrossRef]
- Haigh, P.A.; Chvojka, P.; Ghassemlooy, Z.; Zvanovec, S.; Darwazeh, I. Non-Orthogonal Multi-Band CAP for Highly Spectrally Efficient VLC Systems. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018; pp. 1–6. [Google Scholar]
- Niu, W.; Xu, Z.; Xiao, W.; Liu, Y.; Hu, F.; Wang, G.; Zhang, J.; He, Z.; Yu, S.; Shi, J.; et al. Phosphor-Free Golden Light LED Array for 5.4-Gbps Visible Light Communication Using MIMO Tomlinson-Harashima Precoding. J. Light. Technol. 2022, 40, 5031–5040. [Google Scholar] [CrossRef]
- Niu, W.; Chen, H.; Hu, F.; Shi, J.; Ha, Y.; Li, G.; He, Z.; Yu, S.; Chi, N. Neural-Network-Based Nonlinear Tomlinson-Harashima Precoding for Bandwidth-Limited Underwater Visible Light Communication. J. Light. Technol. 2022, 40, 2296–2306. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.-Q. Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
Parameter | Simulation NN Model | Stem Model | Task Model |
---|---|---|---|
Input layer | 60 | 60 | 60 |
First Hidden layer | 16 | 16 (Tanh) | 16 (Tanh) |
Second Hidden layer | 4 | 4 | 4 |
Output Layer | 1 | 1 | 1 |
Training Epochs | 100 | 500 | * 2/25/125 |
Optimizer | Adam | Adam | Adam |
Constellation | Signal Vpp mV | BER LMS/Volterra (2nd Order) | BER DNN | BER Stem Model (550 mV) |
---|---|---|---|---|
64 QAM | 250 | 2.41 × 102 | 2.04 × 10−2 | 9.87 × 10−2 |
350 | 6.42 × 10−3 | 4.38 × 10−3 | 1.54 × 10−1 | |
450 | 2.53 × 10−3 | 1.21 × 10−3 | 6.43 × 10−2 | |
550 | 2.71 × 10−3 | 5.46 × 10−4 | 5.46 × 10−4 | |
650 | 6.18 × 10−3 | 6.47 × 10−4 | 1.29 × 10−1 | |
750 | 1.48 × 10−2 | 1.29 × 10−3 | 7.37 × 10−2 | |
64 APSK | 250 | 1.60 × 10−2 | 1.37 × 10−2 | 3.03 × 10−1 |
350 | 3.56 × 10−3 | 2.73 × 10−3 | 1.96 × 10−1 | |
450 | 1.81 × 10−3 | 8.19 × 10−4 | 2.00 × 10−2 | |
550 | 2.72 × 10−3 | 5.21 × 10−4 | 5.21 × 10−4 | |
650 | 7.20 × 10−3 | 7.86 × 10−4 | 7.13 × 10−2 | |
750 | 1.73 × 10−2 | 1.99 × 10−3 | 9.70 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Shi, J.; Niu, W.; Qin, G.; Jin, R.; He, Z.; Chi, N. Transfer Learning Strategy in Neural Network Application for Underwater Visible Light Communication System. Sensors 2022, 22, 9969. https://doi.org/10.3390/s22249969
Xu Z, Shi J, Niu W, Qin G, Jin R, He Z, Chi N. Transfer Learning Strategy in Neural Network Application for Underwater Visible Light Communication System. Sensors. 2022; 22(24):9969. https://doi.org/10.3390/s22249969
Chicago/Turabian StyleXu, Zengyi, Jianyang Shi, Wenqing Niu, Guojin Qin, Ruizhe Jin, Zhixue He, and Nan Chi. 2022. "Transfer Learning Strategy in Neural Network Application for Underwater Visible Light Communication System" Sensors 22, no. 24: 9969. https://doi.org/10.3390/s22249969
APA StyleXu, Z., Shi, J., Niu, W., Qin, G., Jin, R., He, Z., & Chi, N. (2022). Transfer Learning Strategy in Neural Network Application for Underwater Visible Light Communication System. Sensors, 22(24), 9969. https://doi.org/10.3390/s22249969