Beam Damage Assessment Using Natural Frequency Shift and Machine Learning
Abstract
:1. Introduction
2. Creating the Database for Machine Learning (ML)
- The severity depends on the crack depth a and is independent of the crack position x, boundary conditions, and vibration mode number i. Therefore, the severity for a beam with a given crack once calculated using Equation (3) is valid for that beam irrespective of the boundary conditions. In practice, we calculate the severity using data obtained from static finite element analysis for a cantilever beam because it presents an important deflection at the free end. A comprehensive description of the procedure to determine the correct severity is given in [32];
- The value of the normalized modal curvature at the position x where the crack is located reduces the effect of the severity since at that position less stress is stored in the beam. This term depends on the vibration mode number i and the boundary conditions. Therefore, Equation (2) has a large degree of generality; it can be properly used for any support type if the correct curvature function is employed. Hereinafter we exemplify the case of a cantilever, thus Equation (4) is used.
- TARGET elements, which are the local value of the curvature for a given position, the severity of the defect, and the severity corresponding to the weak fixing. These are placed on columns, the number of columns m corresponding to the desired number of scenarios. The index of the column is denoted k, thus k = 1,…,m;
- INPUT elements, which are the relative frequency shifts calculated with the mathematical relations (2) or (6) for a chosen number of vibration modes n. These are also arranged in columns, each INPUT column corresponding to a TARGET column.
3. Machine Learning Methods
3.1. Random Forest
3.2. Artificial Neural Networks
3.3. Evaluation of the Models
4. Numerical Validation
5. Experimental Validation
5.1. Perfect Clamping Experiments
5.2. Improper Clamping Experiments
- The structure has initially ideal boundary conditions, but after a while, a crack occurs and an alteration of the fixing system is present, i.e., the clamping becomes non-ideal;
- The structure has from the beginning non-ideal boundary conditions, so the fixing system remains unchanged, and is affected after a while by a crack.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doebling, S.W.; Farrar, C.; Prime, M.B. A Summary Review of Vibration-Based Damage Identification Methods. Shock. Vib. Dig. 1988, 30, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Radzienski, M.; Krawczuk, M.; Palacz, M. Improvement of damage detection methods based on experimental modal parameters. Mech. Syst. Signal Processing 2011, 25, 2169–2190. [Google Scholar] [CrossRef]
- Fan, W.; Qiao, P.Z. Vibration-based damage identification methods: A review and comparative study. Struct. Health Monit. 2011, 10, 83–111. [Google Scholar] [CrossRef]
- Li, M.; Wu, Z.; Yang, H.; Huang, H. Direct damage index based on inverse finite element method for structural damage identification. Ocean Eng. 2021, 221, 108545. [Google Scholar] [CrossRef]
- Al-Nasar, M.K.R.; Al-Zwainy, F.M.S. A systematic review of structural materials health monitoring system for girder-type bridges. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Tan, X. Review on Vibration-Based Structural Health Monitoring Techniques and Technical Codes. Symmetry 2021, 13, 1998. [Google Scholar] [CrossRef]
- Gillich, G.R.; Furdui, H.; Wahab, M.A.; Korka, Z.I. A robust damage detection method based on multi-modal analysis in variable temperature conditions. Mech. Syst. Signal Processing 2019, 115, 361–379. [Google Scholar] [CrossRef]
- Cheng, L.; Cigada, A. An analytical perspective about structural damage identification based on transmissibility function. Struct. Health Monit. 2020, 19, 142–155. [Google Scholar] [CrossRef]
- Pacheco-Chérrez, J.; Cárdenas, D.; Probst, O. Experimental Detection and Measurement of Crack-Type Damage Features in Composite Thin-Wall Beams Using Modal Analysis. Sensors 2021, 21, 8102. [Google Scholar] [CrossRef]
- Ravi, J.T.; Nidhan, S.; Muthu, N.; Maiti, S.K. Analytical and experimental studies on detection of longitudinal, L and inverted T cracks in isotropic and bi-material beams based on changes in natural frequencies. Mech. Syst. Signal Processing 2018, 101, 67–96. [Google Scholar] [CrossRef]
- Bao, A.; Gulasey, M.; Guillaume, C.; Levitova, N.; Moraes, A.; Satter, C. Structural Capacity Analysis of Corroded Steel Girder Bridges. In Proceedings of the 3rd International Conference on Civil, Structural and Transportation Engineering, Niagara Falls, ON, Canada, 10–12 June 2018. [Google Scholar] [CrossRef]
- Saeedi, K.; Bhat, B.R. Clustered Natural Frequencies in Multi-Span Beams with Constrained Characteristic Functions. Shock. Vib. 2011, 18, 697–707. [Google Scholar] [CrossRef]
- Praisach, Z.I.; Gillich, N.; Negru, I. Natural Frequency Changes of Euler-Bernoulli Continuous Beams with Two Spans due to Crack Occurrence. Rom. J. Acoust. Vib. 2014, 11, 80–83. [Google Scholar]
- Zhang, Y.; Xie, Q.; Li, G.; Liu, Y. Multi-Damage Identification of Multi-Span Bridges Based on Influence Lines. Coatings 2021, 11, 905. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, S.; Wang, P.; Zhang, J. Application of signal processing and support vector machine to transverse cracking detection in asphalt pavement. J. Cent. South Univ. 2021, 28, 2451–2462. [Google Scholar] [CrossRef]
- Li, M.; Jia, D.; Wu, Z.; Qiu, S.; He, W. Structural damage identification using strain mode differences by the iFEM based on the convolutional neural network (CNN). Mech. Syst. Signal Processing 2022, 165, 108289. [Google Scholar] [CrossRef]
- Dong, L.; Tang, Z.; Li, X.; Chen, Y.; Xue, J. Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform. J. Cent. South Univ. 2020, 27, 3078–3089. [Google Scholar] [CrossRef]
- Hou, Y.; Li, Q.; Zhang, C.; Lu, G.; Ye, Z.; Chen, Y.; Wang, L.; Cao, D. The state-of-the-art review on applications of intrusive sensing, image processing techniques, and machine learning methods in pavement monitoring and analysis. Engineering 2021, 7, 845–856. [Google Scholar] [CrossRef]
- Zhou, Q.; Ning, Y.; Zhou, Q.; Luo, L.; Lei, J. Structural damage detection method based on random forests and data fusion. Struct. Health Monit. 2013, 12, 48–58. [Google Scholar] [CrossRef]
- Guo, X.; Hao, P. Using a Random Forest Model to Predict the Location of Potential Damage on Asphalt Pavement. Appl. Sci. 2021, 11, 10396. [Google Scholar] [CrossRef]
- Huang, D.; Hu, D.; He, J.; Xiong, Y. Structure Damage Detection Based on Ensemble Learning. In Proceedings of the 9th International Conference on Mechanical and Aerospace Engineering (ICMAE), Budapest, Hungary, 10–13 July 2018. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Wahab, M.A. Damage detection using vibration data and dynamic transmissibility ensemble with auto-associative neural network. Mechanika 2017, 23, 688–695. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Kim, C.; Ha, S.-H. Multiple Damage Detection of an Offshore Helideck through the Two-Step Artificial Neural Network Based on the Limited Mode Shape Data. Sensors 2021, 21, 7357. [Google Scholar] [CrossRef] [PubMed]
- Elshafey, A.A.; Dawood, N.; Marzouk, H.; Haddara, M. Crack width in concrete using artificial neural networks. Eng. Struct. 2013, 1, 676–686. [Google Scholar] [CrossRef]
- Kumar, A.; Vashishtha, G.; Gandhi, C.P.; Zhou, Y.; Glowacz, A.; Xiang, J. Novel Convolutional Neural Network (NCNN) for the Diagnosis of Bearing Defects in Rotary Machinery. IEEE Trans. Instrum. Meas. 2021, 70, 3510710. [Google Scholar] [CrossRef]
- Tran-Ngoc, H.; Khatir, S.; De Roeck, G.; Bui-Tien, T.; Wahab, M.A. An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm. Eng. Struct. 2019, 199, 109637. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Reddy, S.M.; Sreekanth, T.G. Dynamic Study and Detection of Edge Crack in Composite Laminates Using Vibration Parameters. Trans. Indian Inst. Met. 2021, 74, 1–10. [Google Scholar] [CrossRef]
- Gillich, G.R.; Praisach, Z.I. Modal identification and damage detection in beam-like structures using the power spectrum and time-frequency analysis. Signal Processing 2014, 96, 29–44. [Google Scholar] [CrossRef]
- Gillich, G.R.; Aman, A.T.; Wahab, M.A.; Tufisi, C. Detection of Multiple Cracks Using an Energy Method Applied to the Concept of Equivalent Healthy Beam. In Proceedings of the 13th International Conference on Damage Assessment of Structures, Porto, Portugal, 9–10 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 63–78. [Google Scholar] [CrossRef]
- Gillich, G.R.; Tufoi, M.; Korka, Z.I.; Stanciu, E.; Petrica, A. The relations between deflection, stored energy and natural frequencies, with application in damage detection. Rom. J. Acoust. Vib. 2016, 13, 87–93. [Google Scholar]
- Gillich, G.R.; Praisach, Z.I. Robust method to identify damages in beams based on frequency shift analysis. Health Monit. Struct. Biol. Syst. 2012, 8348, 83481D. [Google Scholar]
- Gillich, N.; Tufisi, C.; Vasile, O.; Gillich, G.R. Statistical Method for Damage Severity and Frequency Drop Estimation for a Cracked Beam using Static Test Data. Rom. J. Acoust. Vib. 2019, 16, 47–51. [Google Scholar]
- Gillich, G.R.; Maia, N.M.M.; Wahab, M.A.; Tufisi, C.; Korka, Z.I.; Gillich, N.; Pop, M.V. Damage Detection on a Beam with Multiple Cracks: A Simplified Method Based on Relative Frequency Shifts. Sensors 2021, 21, 5215. [Google Scholar] [CrossRef]
- Negru, I.; Praisach, Z.I.; Gillich, G.R.; Vasile, O. About the Neutral Axis Distortion due to Cracks and its Influence upon the Beams Natural Frequencies. Rom. J. Acoust. Vib. 2012, 12, 35–38. [Google Scholar]
- Tufisi, C.; Gillich, G.R. Training Data for Cantilever Beam with Transverse Cracks; Version 1; Mendeley Data: London, UK, 2021; Available online: https://doi.org/10.17632/db94d5ccr6.1 (accessed on 25 January 2022). [CrossRef]
- Marsland, S. Machine Learning: An Algorithmic Perspective, 2nd ed.; Taylor & Francis Group: Boca Raton, USA, 2014; pp. 249–280. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Probst, P.; Boulesteix, A.L. To tune or not to tune the number of trees in random forest. J. Mach. Learn. Res. 2017, 18, 6673–6690. Available online: https://arxiv.org/pdf/1705.05654.pdf (accessed on 25 January 2022).
- Sony, S. Towards Multiclass Damage Detection and Localization Using Limited Vibration Measurements. Ph.D. Thesis, Western University, Ontario, ON, Canada, 2021. [Google Scholar]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [Green Version]
- Burden, F.; Winkler, D. Bayesian regularization of neural networks. Methods Mol. Biol. 2008, 458, 25–44. [Google Scholar] [CrossRef]
- Tufisi, C. FEM Simulation Results; Version 1; Mendeley Data: London, UK, 2021; Available online: https://doi.org/10.17632/dn4pxx6b3m.1 (accessed on 25 January 2022). [CrossRef]
- Mituletu, I.C.; Gillich, G.R.; Maia, N.M.M. A method for an accurate estimation of natural frequencies using swept-sine acoustic excitation. Mech. Syst. Signal Processing 2019, 116, 693–709. [Google Scholar] [CrossRef]
- Nedelcu, D.; Gillich, G.R. A structural health monitoring Python code to detect small changes in frequencies. Mech. Syst. Signal Processing 2021, 147, 107087. [Google Scholar] [CrossRef]
- Gillich, G.R.; Nedelcu, D. Data for: PyFEST—A Python Code for Accurate Frequency Estimation; Version 1; Mendeley Data: London, UK, 2020; Available online: https://doi.org/10.17632/g6tc23z48p.1 (accessed on 25 January 2022). [CrossRef]
Segment limits | 0–150 | 100–300 | 250–400 | 350–500 | 450–600 | 550–700 | 650–800 | 750–900 | 850–1000 |
Network name | Sector 1 | Sector 2 | Sector 3 | Sector 4 | Sector 5 | Sector 6 | Sector 7 | Sector 8 | Sector 9 |
Parameter | Meaning | Value | Range |
---|---|---|---|
n_estimations | The number of estimators in the forest | 400 | 200–2000, step 200 |
max_features | max number of features considered for splitting a node | sqrt | - |
max_depth | max number of levels in each decision tree | None | None; 10–110, step 10 |
min_samples_split | min number of data points placed in a node before it is split | 2 | 2, 5, 10 |
min_samples_leaf | min number of data points allowed in a leaf node | 1 | 1, 2, 4 |
bootstrap | method for sampling data points. True= bootstrap samples | true | true, false |
Scen. | Crack Pos. x (mm) | Crack Depth a2 (mm) | Weak Clamp. | Natural Frequencies Obtained for the First 8 Modes | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | ||||
0 | Undamaged | 4.09 | 25.627 | 71.757 | 140.63 | 232.53 | 347.46 | 485.47 | 646.59 | ||
1 | 100 | 1 | 0 | 4.081 | 25.606 | 71.745 | 140.631 | 232.472 | 347.229 | 484.947 | 645.751 |
2 | 150 | 1 | 0 | 4.082 | 25.620 | 71.754 | 140.552 | 232.257 | 347.024 | 485.083 | 646.448 |
3 | 400 | 1 | 0 | 4.087 | 25.601 | 71.708 | 140.588 | 232.186 | 347.447 | 484.904 | 646.092 |
4 | 550 | 1 | 0 | 4.089 | 25.588 | 71.739 | 140.478 | 232.383 | 347.238 | 484.950 | 646.435 |
5 | 613 | 1 | 0 | 4.089 | 25.593 | 71.686 | 140.609 | 232.189 | 347.401 | 485.079 | 645.855 |
6 | 133 | 1 | 20 | 4.073 | 25.568 | 71.624 | 140.323 | 231.864 | 346.328 | 483.945 | 644.903 |
7 | 280 | 1.2 | 20 | 4.073 | 25.555 | 71.445 | 140.116 | 231.936 | 346.097 | 483.238 | 644.674 |
8 | 410 | 1 | 20 | 4.080 | 25.549 | 71.579 | 140.300 | 231.744 | 346.819 | 483.831 | 645.103 |
9 | 570 | 1 | 20 | 4.082 | 25.512 | 71.586 | 140.209 | 231.700 | 346.824 | 483.324 | 645.633 |
10 | 962 | 0.6 | 10 | 4.088 | 25.616 | 71.727 | 140.571 | 232.430 | 347.305 | 485.241 | 646.262 |
Scen. | Crack Pos. x (mm) | Crack Depth a2 (mm) | Weak Clamp. | RFS for the First 8 Modes | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RFS 1 | RFS 2 | RFS 3 | RFS 4 | RFS 5 | RFS 6 | RFS 7 | RFS 8 | ||||
1 | 100 | 1 | 0 | 0.002393 | 0.001227 | 0.000540 | 0.000099 | 0.000015 | 0.000075 | 0.000336 | 0.000652 |
2 | 150 | 1 | 0 | 0.001899 | 0.000254 | 0.000038 | 0.000552 | 0.001173 | 0.001254 | 0.000798 | 0.000219 |
3 | 400 | 1 | 0 | 0.000644 | 0.001020 | 0.000683 | 0.000299 | 0.001480 | 0.000037 | 0.001166 | 0.000771 |
4 | 550 | 1 | 0 | 0.000240 | 0.001535 | 0.000256 | 0.001080 | 0.000632 | 0.000640 | 0.001072 | 0.000240 |
5 | 613 | 1 | 0 | 0.000141 | 0.001343 | 0.000991 | 0.000146 | 0.001467 | 0.000171 | 0.000805 | 0.001136 |
6 | 133 | 1 | 20 | 0.002224 | 0.000466 | 0.000003 | 0.000336 | 0.001015 | 0.001417 | 0.00131 | 0.00077 |
7 | 280 | 1.2 | 20 | 0.004237 | 0.002804 | 0.004348 | 0.003654 | 0.002554 | 0.003922 | 0.004598 | 0.002963 |
8 | 410 | 1 | 20 | 0.002522 | 0.003063 | 0.002483 | 0.002346 | 0.003381 | 0.001844 | 0.003377 | 0.002300 |
9 | 570 | 1 | 20 | 0.000218 | 0.00167 | 0.000507 | 0.000837 | 0.00116 | 0.000208 | 0.001627 | 0.00002 |
10 | 962 | 0.6 | 10 | 0.000412 | 0.000412 | 0.000414 | 0.000419 | 0.000429 | 0.000446 | 0.000472 | 0.000507 |
FEM Scenarios | Random Forest Preliminary Output | |||||||
---|---|---|---|---|---|---|---|---|
Scen. | Position (mm) | Severity γ2 (a2) | Position (mm) | Severity γ2 (a2) | Position Error (%) | Severity Error (%) | Weak Clamping | |
1 | 100 | 0.0033459 | 99.5 | 0.0028 | 0.05 | 0.05 | Not detected | True |
2 | 150 | 0.0033459 | 151.6 | 0.0029 | 0.16 | 0.04 | Not detected | True |
3 | 400 | 0.0033459 | 458.0 | 0.0024 | 5.80 | 0.09 | Not detected | True |
4 | 550 | 0.0033459 | 515.8 | 0.0028 | 3.42 | 0.05 | Not detected | True |
5 | 613 | 0.0033459 | 602.5 | 0.0028 | 1.05 | 0.05 | Not detected | True |
6 | 133 | 0.0033459 | 138.1 | 0.0027 | 0.51 | 0.06 | Not detected | False |
7 | 280 | 0.0051239 | 204.9 | 0.0068 | 7.51 | 0.17 | Detected | True |
8 | 410 | 0.0033459 | 365.1 | 0.0044 | 4.49 | 0.11 | Detected | True |
9 | 570 | 0.0033459 | 547.3 | 0.0063 | 2.27 | 0.30 | Detected | True |
10 | 962 | 0.0011911 | 941.1 | 0.0129 | 2.09 | 1.17 | Not detected | False |
FEM Scenarios | Refined Random Forest Output | |||||||
---|---|---|---|---|---|---|---|---|
Scen. | Position (mm) | Severity γ2 (a2) | Position (mm) | Severity γ2 (a2) | Position Error (%) | Severity Error (%) | Weak Clamping | |
1 | 100 | 0.0033459 | 97.7 | 0.0030 | 0.23 | 0.03 | Detected | False |
2 | 150 | 0.0033459 | 148.3 | 0.0029 | 0.17 | 0.04 | Detected | False |
3 | 400 | 0.0033459 | 400.0 | 0.0025 | 0 | 0.08 | Not detected | True |
4 | 550 | 0.0033459 | 539.6 | 0.0028 | 1.04 | 0.05 | Detected | False |
5 | 613 | 0.0033459 | 615.3 | 0.0026 | 0.23 | 0.07 | Not detected | True |
6 | 133 | 0.0033459 | 136.3 | 0.0024 | 0.33 | 0.09 | Not detected | False |
7 | 280 | 0.0051239 | 303.4 | 0.0087 | 2.34 | 0.36 | Detected | True |
8 | 410 | 0.0033459 | 410.1 | 0.0046 | 0.01 | 0.13 | Detected | True |
9 | 570 | 0.0033459 | 570.1 | 0.0058 | 0.01 | 0.25 | Detected | True |
10 | 962 | 0.0011911 | 976.3 | 0.010 | 1.43 | 0.88 | Detected | True |
FEM Scenarios | Coarse Network—Network 1 Output | |||||||
---|---|---|---|---|---|---|---|---|
Scen. | Position (mm) | Severity γ2 (a2) | Position (mm) | Severity γ2 (a2) | Position Error (%) | Severity Error (%) | Weak Clamping | |
1 | 100 | 0.0033459 | 99.6 | 0.0027 | 0.04 | 0.06 | Not detected | False |
2 | 150 | 0.0033459 | 147.7 | 0.0023 | 0.23 | 0.10 | Not detected | False |
3 | 400 | 0.0033459 | 392.9 | 0.0011 | 0.71 | 0.22 | Not detected | False |
4 | 550 | 0.0033459 | 553.9 | 0.0031 | 0.39 | 0.02 | Not detected | False |
5 | 613 | 0.0033459 | 604.4 | 0.0022 | 0.86 | 0.11 | Not detected | False |
6 | 133 | 0.0033459 | 132.9 | 0.0047 | 0.01 | 0.14 | Detected | True |
7 | 280 | 0.0051239 | 261.5 | 0.0098 | 1.85 | 0.47 | Detected | True |
8 | 410 | 0.0033459 | 377.5 | 0.0033 | 3.25 | 0.00 | Detected | True |
9 | 570 | 0.0033459 | 569.1 | 0.0072 | 0.09 | 0.39 | Detected | True |
10 | 962 | 0.0011911 | 971 | 0.0134 | 0.9 | 1.22 | Detected | True |
FEM Scenarios | Accuracy Enhanced Network Output | ||||||||
---|---|---|---|---|---|---|---|---|---|
Scen. | Position (mm) | Severity γ2 (a2) | Network Used | Position (mm) | Severity γ2 (a2) | Position Error (%) | Severity Error (%) | Weak Clamping | |
1 | 100 | 0.0033459 | Sector 1 | 99.6 | 0.003332 | 0.04 | 0.00 | Not detected | True |
2 | 150 | 0.0033459 | Sector 2 | 148.9 | 0.003174 | 0.11 | 0.02 | Not detected | True |
3 | 400 | 0.0033459 | Sector 4 | 398.3 | 0.003031 | 0.17 | 0.03 | Not detected | True |
4 | 550 | 0.0033459 | Sector 5 | 554.7 | 0.002947 | 0.47 | 0.04 | Not detected | False |
5 | 613 | 0.0033459 | Sector 6 | 612.6 | 0.002936 | 0.04 | 0.04 | Not detected | True |
6 | 133 | 0.0033459 | Sector 1 | 132.3 | 0.003385 | 0.07 | 0.00 | Detected | True |
7 | 280 | 0.0051239 | Sector 3 | 280.8 | 0.004469 | 0.08 | 0.07 | Detected | True |
8 | 410 | 0.0033459 | Sector 4 | 409.4 | 0.003086 | 0.06 | 0.03 | Detected | True |
9 | 570 | 0.0033459 | Sector 6 | 570.4 | 0.003353 | 0.04 | 0.00 | Detected | True |
10 | 962 | 0.0011911 | Sector 9 | 962.2 | 0.001419 | 0.02 | 0.02 | Detected | True |
Test Beam | Natural Frequencies [Hz] | |||||||
---|---|---|---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | |
Beam 1 | 4035 | 25,284 | 70,970 | 139,090 | 230,336 | 344,196 | 481,809 | 641,261 |
Beam 2 | 4060 | 25,439 | 71,426 | 139,902 | 231,038 | 344,750 | 482,503 | 641,823 |
Beam 3 | 4034 | 25,341 | 71,064 | 13,915 | 230,138 | 341,868 | 480,773 | 636,769 |
Beam 4 | 4030 | 25,367 | 71,213 | 139,342 | 230,295 | 343,254 | 480,795 | 639,510 |
Beam 5 | 4044 | 25,482 | 71,287 | 139,42 | 228,528 | 344,177 | 481,213 | 641,114 |
Test Beam | Crack Position | Crack Depth | Natural Frequencies [Hz] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | |||
1 | 98 | 2.5 | 3.952 | 25.086 | 70.854 | 139.086 | 229.859 | 342.143 | 477.105 | 633.647 |
2 | 310 | 1.25 | 4.053 | 25.422 | 71.259 | 139.818 | 230.913 | 343.835 | 481.913 | 641.729 |
3 | 569 | 2.5 | 4.024 | 24.904 | 70.707 | 137.883 | 227.494 | 340.994 | 472.791 | 636.758 |
4 | 126 | 2.5 | 4.200 | 25.226 | 71.208 | 138.982 | 228.245 | 338.441 | 473.771 | 632.801 |
5 | 759 | 2.5 | 4.043 | 25.343 | 70.051 | 137.012 | 227.517 | 343.834 | 475.326 | 630.614 |
Test Beam | Crack Position | Crack Depth | Calculated RFS Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | |||
1 | 98 | 2.5 | 0.020610 | 0.007828 | 0.001629 | 0.000031 | 0.002070 | 0.005964 | 0.009762 | 0.011873 |
2 | 310 | 1.25 | 0.001795 | 0.000660 | 0.002334 | 0.000600 | 0.000542 | 0.002654 | 0.001223 | 0.000146 |
3 | 569 | 2.5 | 0.002382 | 0.017252 | 0.005019 | 0.009109 | 0.011488 | 0.002556 | 0.016603 | 0.000017 |
4 | 126 | 2.5 | 0.023458 | 0.005550 | 0.000064 | 0.002581 | 0.008901 | 0.014021 | 0.014610 | 0.010491 |
5 | 759 | 2.5 | 0.000288 | 0.005461 | 0.017336 | 0.017272 | 0.004422 | 0.000996 | 0.012234 | 0.016377 |
Damage Scenarios | Preliminary Random Forest | |||||||
---|---|---|---|---|---|---|---|---|
Scen. | Position (mm) | Severity γ2 (a2) | Position (mm) | Severity γ2 (a2) | Position Error (%) | Severity Error (%) | Weak Clamping | |
1 | 98 | 0.026224 | 96.99 | 0.0264 | 0.10 | 0.02 | Not detected | True |
2 | 310 | 0.005124 | 309.85 | 0.0051 | 0.01 | 0.00 | Not detected | True |
3 | 569 | 0.026224 | 564.87 | 0.0331 | 0.41 | 0.69 | Not detected | True |
4 | 126 | 0.026224 | 125.42 | 0.0329 | 0.06 | 0.67 | Not detected | True |
5 | 759 | 0.026224 | 758.25 | 0.0329 | 0.08 | 0.67 | Not detected | True |
Damage Scenarios | Coarse ANN—Network 1 Output | |||||||
---|---|---|---|---|---|---|---|---|
Scen. | Position (mm) | Severity γ2 (a2) | Position (mm) | Severity γ2 (a2) | Position Error (%) | Severity Error (%) | Weak Clamping | |
1 | 98 | 0.026224 | 97.8 | 0.0282 | 0.02 | 0.20 | Not detected | False |
2 | 310 | 0.005124 | 313.2 | 0.0042 | 0.32 | 0.09 | Not detected | False |
3 | 569 | 0.026224 | 567.2 | 0.0323 | 0.18 | 0.61 | Not detected | False |
4 | 126 | 0.026224 | 126 | 0.0337 | 0.00 | 0.75 | Not detected | False |
5 | 759 | 0.026224 | 757.8 | 0.0331 | 0.12 | 0.69 | Not detected | False |
Damage Scenarios | Refined Random Forest | |||||||
---|---|---|---|---|---|---|---|---|
Scen. | Position (mm) | Severity γ2 (a2) | Position (mm) | Severity γ2 (a2) | Position Error (%) | Severity Error (%) | Weak Clamping | |
1 | 98 | 0.026224 | 99.40 | 0.0260 | 0.14 | 0.02 | Not detected | True |
2 | 310 | 0.005124 | 309.73 | 0.0049 | 0.03 | 0.02 | Not detected | True |
3 | 569 | 0.026224 | 568.22 | 0.0327 | 0.08 | 0.65 | Not detected | True |
4 | 126 | 0.026224 | 127.84 | 0.0329 | 0.18 | 0.67 | Not detected | True |
5 | 759 | 0.026224 | 758.19 | 0.0328 | 0.08 | 0.66 | Not detected | True |
Damage Scenarios | Enhanced Network Output | |||||||
---|---|---|---|---|---|---|---|---|
Scen. | Position (mm) | Severity γ2 (a2) | Position (mm) | Severity γ2 (a2) | Position Error (%) | Severity Error (%) | Weak Clamping | |
1 | 98 | 0.026224 | 98 | 0.0275 | 0.00 | 0.13 | Not detected | True |
2 | 310 | 0.005124 | 310 | 0.0054 | 0.00 | 0.03 | Not detected | True |
3 | 569 | 0.026224 | 568 | 0.0343 | 0.10 | 0.81 | Not detected | True |
4 | 126 | 0.026224 | 126 | 0.0343 | 0.00 | 0.81 | Not detected | True |
5 | 759 | 0.026224 | 758 | 0.0343 | 0.10 | 0.81 | Not detected | True |
Test Beam | Crack Position | Crack Depth | Calculated Natural Frequencies [Hz] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | |||
Undamaged with ideal clamping | 4035 | 25,284 | 70,970 | 139,090 | 230,336 | 344,196 | 481,809 | 641,261 | ||
Undamaged with non-ideal clamping | 4.0051 | 25.111 | 70.48 | 138.95 | 229.21 | 341.18 | 476.93 | 635.49 | ||
1 | 98 | 2.5 | 3.926 | 24.935 | 70.420 | 138.211 | 228.362 | 339.873 | 474.057 | 630.080 |
Test Beam | Crack Position | Crack Depth | Calculated RFS Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | |||
1i | 98 | 2.5 | 0.026955 | 0.013803 | 0.007749 | 0.006322 | 0.008572 | 0.012559 | 0.016089 | 0.017436 |
1n-i | 98 | 2.5 | 0.019749 | 0.007008 | 0.000851 | 0.005318 | 0.003699 | 0.003830 | 0.006023 | 0.008513 |
Damage Scenario | Results Obtained with the ML Models | |||||||
---|---|---|---|---|---|---|---|---|
Scen. | Position (mm) | Severity γ2 (a2) | Position (mm) | Severity γ2 (a2) | Position Error (%) | Severity Error (%) | Weak Clamping | |
First-step RF | 98 | 0.026224 | 129.36 | 0.038300 | 3.14 | 1.21 | Detected | True |
Second-step RF | 92.68 | 0.039000 | 0.53 | 1.28 | Detected | True | ||
First-step ANN | 102.07 | 0.031283 | 0.41 | 0.51 | Detected | True | ||
Second-step ANN | 99.13 | 0.027038 | 0.11 | 0.08 | Detected | True |
Damage Scenarios | Results Obtained with the ML Models | |||||||
---|---|---|---|---|---|---|---|---|
Scen. | Position (mm) | Severity γ2 (a2) | Position (mm) | Severity γ2 (a2) | Position Error (%) | Severity Error (%) | Weak Clamping | |
First-step RF | 98 | 0.026224 | 82.54 | 0.0353 | 1.546 | −0.9076 | Not detected | True |
Second-step RF | 32.05 | 0.0292 | 6.595 | −0.2976 | Not detected | True | ||
First-step ANN | 74.63 | 0.0247 | 2.337 | 0.1524 | Not detected | False | ||
Second-step ANN | 96.4 | 0.0247 | 0.16 | 0.1524 | Not detected | True |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gillich, N.; Tufisi, C.; Sacarea, C.; Rusu, C.V.; Gillich, G.-R.; Praisach, Z.-I.; Ardeljan, M. Beam Damage Assessment Using Natural Frequency Shift and Machine Learning. Sensors 2022, 22, 1118. https://doi.org/10.3390/s22031118
Gillich N, Tufisi C, Sacarea C, Rusu CV, Gillich G-R, Praisach Z-I, Ardeljan M. Beam Damage Assessment Using Natural Frequency Shift and Machine Learning. Sensors. 2022; 22(3):1118. https://doi.org/10.3390/s22031118
Chicago/Turabian StyleGillich, Nicoleta, Cristian Tufisi, Christian Sacarea, Catalin V. Rusu, Gilbert-Rainer Gillich, Zeno-Iosif Praisach, and Mario Ardeljan. 2022. "Beam Damage Assessment Using Natural Frequency Shift and Machine Learning" Sensors 22, no. 3: 1118. https://doi.org/10.3390/s22031118
APA StyleGillich, N., Tufisi, C., Sacarea, C., Rusu, C. V., Gillich, G. -R., Praisach, Z. -I., & Ardeljan, M. (2022). Beam Damage Assessment Using Natural Frequency Shift and Machine Learning. Sensors, 22(3), 1118. https://doi.org/10.3390/s22031118