Monolithic Integrated OLED–OPD Unit for Point-of-Need Nitrite Sensing
Abstract
:1. Introduction
2. Experimental Section
2.1. OLED–OPD Matrix Fabrication
2.2. Chemicals and Materials
2.3. Device Characterization
2.4. Design of the Test Chamber
2.5. Nitrite Sensing with OLED–OPD Matrix
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Follett, R.F.; Hatfield, J.L. Nitrogen in the Environment: Sources, Problems, and Management. Sci. World J. 2001, 1, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Speijers, G.J.A. Nitrate and nitrite in drinking-water. World Health Organ. 2011. Available online: https://www.who.int/water_sanitation_health/dwq/chemicals/nitratenitrite2ndadd.pdf (accessed on 30 August 2021).
- Hallberg, G.R. Pesticides Pollution of Groundwater in the Humid United States. Agric. Ecosyst. Environ. 1989, 26, 299–367. [Google Scholar] [CrossRef]
- Parvizishad, M.; Dalvand, A.; MahviA, H.; Goodarzi, F. A Review of Adverse Effects and Benefits of Nitrate and Nitrite in Drinking Water and Food on Human Health. Health Scope 2017, in press. [CrossRef] [Green Version]
- Adarsh, N.; Shanmugasundaram, M.; Ramaiah, D. Efficient Reaction Based Colorimetric Probe for Sensitive Detection, Quantification, and on-Site Analysis of Nitrite Ions in Natural Water Resources. Anal. Chem. 2013, 85, 10008–10012. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Kang, N.; Ke, X.B.; Wang, D.; Ren, L.; Wang, H.J. A Fluorescent Nanoprobe Based on Metal-Enhanced Fluorescence Combined with Förster Resonance Energy Transfer for the Trace Detection of Nitrite Ions. RSC Adv. 2016, 6, 27395–27403. [Google Scholar] [CrossRef]
- Antczak-Chrobot, A.; Bąk, P.; Wojtczak, M. The Use of Ionic Chromatography in Determining the Contamination of Sugar By-Products by Nitrite and Nitrate. Food Chem. 2018, 240, 648–654. [Google Scholar] [CrossRef]
- Tan, J.F.; Anastasi, A.; Chandra, S. Electrochemical Detection of Nitrate, Nitrite and Ammonium for on-Site Water Quality Monitoring. Curr. Opin. Electrochem. 2022, 32, 100926. [Google Scholar] [CrossRef]
- Li, G.; Xia, Y.; Tian, Y.; Wu, Y.; Liu, J.; He, Q.; Chen, D. Review—Recent Developments on Graphene-Based Electrochemical Sensors toward Nitrite. J. Electrochem. Soc. 2019, 166, B881–B895. [Google Scholar] [CrossRef]
- Wang, Q.H.; Yu, L.J.; Liu, Y.; Lin, L.; Lu, R.G.; Zhu, J.P.; He, L.; Lu, Z.L. Methods for the Detection and Determination of Nitrite and Nitrate: A Review. Talanta 2017, 165, 709–720. [Google Scholar] [CrossRef]
- Dutt, J.; Davis, J. Current Strategies in Nitrite Detection and Their Application to Field Analysis. J. Environ. Monit. 2002, 4, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Petsul, P.; Greenway, G.; Haswell, S. The Development of an On-Chip Micro-Flow Injection Analysis of Nitrate with a Cadmium Reductor. Anal. Chim. Acta 2001, 428, 155–161. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, H.L.; Zhu, X.Q.; Zhu, J.M.; Zuo, Y.F.; Yang, Y.; Jiang, F.H.; Sun, C.J.; Zhao, W.H.; Han, X.T. Optofluidic Differential Colorimetry for Rapid Nitrite Determination. Lab Chip 2018, 18, 2994–3002. [Google Scholar] [CrossRef] [PubMed]
- Amanulla, B.; Palanisamy, S.; Chen, S.M.; Chiu, T.W.; Velusamy, V.; Hall, J.M.; Chen, T.-W.; Ramaraj, S.K. Selective Colorimetric Detection of Nitrite in Water Using Chitosan Stabilized Gold Nanoparticles Decorated Reduced Graphene Oxide. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vidal, E.; Lorenzetti, A.; Lista, A.G.; Domini, C.E. Micropaper-Based Analytical Device (ΜPAD) for the Simultaneous Determination of Nitrite and Fluoride Using a Smartphone. Microchem. J. 2018, 143, 467–473. [Google Scholar] [CrossRef]
- Wang, H.; Wan, N.; Ma, L.; Wang, Z.; Cui, B.; Han, W.; Chen, Y. A Novel and Simple Spectrophotometric Method for Detection of Nitrite in Water. Analyst 2018, 143, 4555–4558. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q. Selective Determination of Nitrite/Nitrate Based on Photo-Induced Redox Activity of Titanium Dioxide. J. Sep. Sci. 2018, 41, 4075–4082. [Google Scholar] [CrossRef]
- Feng, Z.; Li, Z.; Zhang, X.; Shi, Y.; Zhou, N. Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probes for Sensitive and Selective Detection of Nitrite. Molecules 2017, 22, 2061. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.H.; Fan, Y.; Wang, B.; Yu, L.P. Polyethylenimine-Capped CdS Quantum Dots for Sensitive and Selective Detection of Nitrite in Vegetables and Water. J. Agric. Food Chem. 2018, 66, 8851–8858. [Google Scholar] [CrossRef]
- Khanfar, M.F.; Abu Eisheh, N.J.; Al-Ghussain, L.; Al-Halhouli, A.T. Lab on a Chip for the Colorimetric Determination of Nitrite in Processed Meat Products in the Jordanian Market. Micromachines 2019, 10, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudala, S.; Dubey, S.K.; Goel, S. Fully Integrated, Automated, and Smartphone Enabled Point-of-Source Portable Platform with Microfluidic Device for Nitrite Detection. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Czugala, M.; Fay, C.; O’Connor, N.E.; Corcoran, B.; Benito-Lopez, F.; Diamond, D. Portable Integrated Microfluidic Analytical Platform for the Monitoring and Detection of Nitrite. Talanta 2013, 116, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.K.; Hou, S.; Kulyk, O.; Bowman, E.M.; Samuel, I.D.W. Wearable Organic Optoelectronic Sensors for Medicine. Adv. Mater. 2015, 27, 7638–7644. [Google Scholar] [CrossRef] [Green Version]
- Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible Organic Photonic Skin. Sci. Adv. 2016, 2, e1501856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Kim, E.; Lee, Y.; Kim, H.; Lee, J.; Kim, M.; Yoo, H.J.; Yoo, S. Toward All-Day Wearable Health Monitoring: An Ultralow-Power, Reflective Organic Pulse Oximetry Sensing Patch. Sci. Adv. 2018, 4, eaas9530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, Y.; Han, D.; Pierre, A.; Ting, J.; Wang, X.; Lochner, C.M.; Bovo, G.; Yaacobi-Gross, N.; Newsome, C.; Wilson, R.; et al. A Flexible Organic Reflectance Oximeter Array. Proc. Natl. Acad. Sci. USA 2018, 115, E11015–E11024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratcliff, E.L.; Veneman, P.A.; Simmonds, A.; Zacher, B.; Huebner, D.; Saavedra, S.S.; Armstrong, N.R. A Planar, Chip-Based, Dual-Beam Refractometer Using an Integrated Organic Light-Emitting Diode (OLED) Light Source and Organic Photovoltaic (OPV) Detectors. Anal. Chem. 2010, 82, 2734–2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lochner, C.M.; Khan, Y.; Pierre, A.; Arias, A.C. All-Organic Optoelectronic Sensor for Pulse Oximetry. Nat. Commun. 2014, 5, 5745. [Google Scholar] [CrossRef] [Green Version]
- Mayr, T.; Abel, T.; Kraker, E.; Köstler, S.; Haase, A.; Konrad, C.; Tscherner, M.; Lamprecht, B. An Optical Sensor Array on a Flexible Substrate with Integrated Organic Opto-Electric Devices. Procedia Eng. 2010, 5, 1005–1008. [Google Scholar] [CrossRef] [Green Version]
- Titov, I.; Kopke, M.; Schneidewind, N.C.; Buhl, J.; Murat, Y.; Gerken, M. OLED OPD Matrix for Sensing on a Single Flexible Substrate. IEEE Sens. J. 2020, 20, 7540–7547. [Google Scholar] [CrossRef]
- Pais, A.; Banerjee, A.; Klotzkin, D.; Papautsky, I. High-Sensitivity, Disposable Lab-on-a-Chip with Thin-Film Organic Electronics for Fluorescence Detection. Lab Chip 2008, 8, 794. [Google Scholar] [CrossRef] [PubMed]
- Poorahong, S.; Lefevre, F.; Perron, M.C.; Juneau, P.; Izquierdo, R. Integration of Optical and Electrochemical Sensors on a Microfluidic Platform Using Organic Optoelectronic Components and Silver Nanowires. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Orlando, FL, USA, 16–20 August 2016; pp. 3002–3005. [Google Scholar] [CrossRef]
- Williams, G.; Backhouse, C.; Aziz, H. Integration of Organic Light Emitting Diodes and Organic Photodetectors for Lab-on-a-Chip Bio-Detection Systems. Electronics 2014, 3, 43–75. [Google Scholar] [CrossRef]
- Lefèvre, F.; Chalifour, A.; Yu, L.; Chodavarapu, V.; Juneau, P.; Izquierdo, R. Algal Fluorescence Sensor Integrated into a Microfluidic Chip for Water Pollutant Detection. Lab Chip 2012, 12, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Jahns, S.; Bräu, M.; Meyer, B.-O.; Karrock, T.; Gutekunst, S.B.; Blohm, L.; Selhuber-Unkel, C.; Buhmann, R.; Nazirizadeh, Y.; Gerken, M. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection. Biomed. Opt. Express 2015, 6, 3724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahns, S.; Gutekunst, S.B.; Selhuber-Unkel, C.; Nazirizadeh, Y.; Gerken, M. Human Blood Microfluidic Test Chip for Imaging, Label-Free Biosensor. Microsyst. Technol. 2016, 22, 1513–1518. [Google Scholar] [CrossRef] [Green Version]
- Jahns, S.; Iwers, A.F.; Balke, J.; Gerken, M. Organic Optoelectronics for Lab-on-Chip Fluorescence Detection. Tech. Mess. 2017, 84, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Threm, D.; Gugat, J.L.; Pradana, A.; Radler, M.; Mikat, J.; Gerken, M. Self-Aligned Integration of Spin-Coated Organic Light-Emitting Diodes and Photodetectors on a Single Substrate. IEEE Photon. Technol. Lett. 2012, 24, 912–914. [Google Scholar] [CrossRef]
- Brizzolari, A.; Cas, M.D.; Cialoni, D.; Marroni, A.; Morano, C.; Samaja, M.; Paroni, R.; Rubino, F. High-Throughput Griess Assay of Nitrite and Nitrate in Plasma and Red Blood Cells for Human Physiology Studies under Extreme Conditions. Molecules 2021, 26, 4569. [Google Scholar] [CrossRef]
- Pai, S.C.; Yang, C.C.; Riley, J.P. Formation Kinetics of the Pink Azo Dye in the Determination of Nitrite in Natural Waters. Anal. Chim. Acta 1990, 232, 345–349. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Pan, Z.; Li, D. A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems. Sensors 2018, 18, 3382. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Liu, W.; Zhou, L.; Li, X.; Chen, K.; Zhang, H. Highly Efficient Green Single-Emitting Layer Phosphorescent Organic Light-Emitting Diodes with an Iridium (III) Complex as a Hole-Type Sensitizer. J. Mater. Chem. C 2019, 7, 2744–2750. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, X.; Jiao, Z.; Liu, X.; Zhang, H. Sensitive Naked Eye Detection and Quantification Assay for Nitrite by a Fluorescence Probe in Various Water Resources. Acta-Part A Mol. Biomol. Spectrosc. 2018, 200, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Luka, G.S.; Nowak, E.; Kawchuk, J.; Hoorfar, M.; Najjaran, H. Portable Device for the Detection of Colorimetric Assays. R. Soc. Open Sci. 2017, 4, 171025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenway, G.; Haswell, S.; Petsul, P. Characterisation of a Micro-Total Analytical System for the Determination of Nitrite with Spectrophotometric Detection. Anal. Chim. Acta 1999, 387, 1–10. [Google Scholar] [CrossRef]
- Sieben, V.J.; Floquet, C.F.A.; Ogilvie, I.R.G.; Mowlem, M.C.; Morgan, H. Microfluidic Colourimetric Chemical Analysis System: Application to Nitrite Detection. Anal. Methods 2010, 2, 484. [Google Scholar] [CrossRef]
- Beaton, A.; Sieben, V.; Floquet, C.F.; Waugh, E.M.; Bey, S.A.K.; Ogilvie, I.R.; Mowlem, M.C.; Morgan, H. An Automated Microfluidic Colourimetric Sensor Applied in Situ to Determine Nitrite Concentration. Sens. Actuators B Chem. 2011, 156, 1009–1014. [Google Scholar] [CrossRef]
- Nightingale, A.M.; Hassan, S.-U.; Warren, B.M.; Makris, K.; Evans, G.W.H.; Papadopoulou, E.; Coleman, S.; Niu, X. A Droplet Microfluidic-Based Sensor for Simultaneous in Situ Monitoring of Nitrate and Nitrite in Natural Waters. Environ. Sci. Technol. 2019, 53, 9677–9685. [Google Scholar] [CrossRef]
- Pires, N.M.M.; Dong, T.; Yang, Z. A Fluorimetric Nitrite Biosensor with Polythienothiophene-Fullerene Thin Film Detectors for on-Site Water Monitoring. Analyst 2019, 144, 43. [Google Scholar] [CrossRef]
Detection Hardware | LOD (µM) | Reference |
---|---|---|
Spectrometer based laboratory systems | ||
Fluorescence spectrometer | 0.1 | Zhang et al. [43] |
Fluorescence spectrometer | 0.04 | Feng et al. [18] |
Fluorescence spectrometer | 0.05 | Ren et al. [19] |
UV–Vis spectrometer | 0.1 | Amanulla et al. [14] |
UV–Vis spectrometer | 0.12 | Wang et al. [16] |
Compact and miniaturized systems | ||
UV lamp–Photomultiplier tube | 0.009 | Wang and Wang [17] |
Smartphone | 0.65 | Vidal et al. [15] |
Raspberry Pi camera | 4.34 | Luka et al. [44] |
Micro spectrometer | 0.2 | Greenway et al. [45] |
LED–CCD camera | <250 | Shi et al. [13] |
LED–Photodiode | 0.014 | Sieben et al. [46] |
LED–Photodiode | 0.015 | Beaton et al. [47] |
LED–Photodiode | 1.7 | Khanfar et al. [20] |
LED–Photodiode | 1.54 | Dudala et al. [21] |
LED–Photodiode | 1.7 | Nightingale et al. [48] |
LED–LED | 0.74 | Czugala et al. [23] |
LED–PTB7:PC70BM OPD | <0.55 | Pires et al. [49] |
TCTA:Ir(mppy)3 OLED–DMQA:DCV3T OPD | 1.0 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titov, I.; Köpke, M.; Gerken, M. Monolithic Integrated OLED–OPD Unit for Point-of-Need Nitrite Sensing. Sensors 2022, 22, 910. https://doi.org/10.3390/s22030910
Titov I, Köpke M, Gerken M. Monolithic Integrated OLED–OPD Unit for Point-of-Need Nitrite Sensing. Sensors. 2022; 22(3):910. https://doi.org/10.3390/s22030910
Chicago/Turabian StyleTitov, Igor, Markus Köpke, and Martina Gerken. 2022. "Monolithic Integrated OLED–OPD Unit for Point-of-Need Nitrite Sensing" Sensors 22, no. 3: 910. https://doi.org/10.3390/s22030910
APA StyleTitov, I., Köpke, M., & Gerken, M. (2022). Monolithic Integrated OLED–OPD Unit for Point-of-Need Nitrite Sensing. Sensors, 22(3), 910. https://doi.org/10.3390/s22030910