Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants—A Review
Abstract
:1. Introduction
2. Sensory Measurements
2.1. Dynamic Olfactometry
2.2. Field Olfactometry
2.3. Examples of Application of Sensory Measurements to the Waste Management Plants
3. Analytical Measurements
3.1. GC-MS
3.2. GC-O-MS
3.3. Single Gas Sensors
3.4. Examples of Applications of Analytical Measurement to the Waste Management Processes Monitoring
4. Electronic Noses
4.1. General Principle
4.2. Electronic Noses Based on Gas Sensors
4.2.1. Transducers for Multi-Arrays
4.2.2. Recent Advancement in Gas Sensing Materials
4.2.3. Advantages and Disadvantages of Different Type of Gas Sensors
4.3. Electronic Noses Based on Mass Spectrometry and Gas Chromatography
4.4. Data Processing
4.4.1. Data Pre-Processing
4.4.2. Classification Methods
4.4.3. Challenges in Data Processing
4.5. Commercially Available E-Noses
5. Application of the Electronic Noses for Monitoring of Mechanical–Biological Treatment of Waste: Analytical Measurements
5.1. Composting
5.2. Anaerobic Digestion–Biogas Formation
6. Application of the Electronic Noses for Odor Impact Assessment– Sensory Measurements
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Feo, G.; De Gisi, S.; Williams, I.D. Public perception of odour and environmental pollution attributed to MSW treatment and disposal facilities: A case study. Waste Manag. 2013, 33, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Sonibare, O.O.; Adeniran, J.A.; Bello, I.S. Landfill air and odour emissions from an integrated waste management facility. J. Environ. Health Sci. Eng. 2019, 17, 13–28. [Google Scholar] [CrossRef]
- Giusti, L. A review of waste management practices and their impact on human health. Waste Manag. 2009, 29, 2227–2239. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, M.; Zhao, Y.; Huang, R. The contribution of biowaste disposal to odor emission from landfills. J. Air Waste Manag. Assoc. 2015, 65, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Palmiotto, M.; Fattore, E.; Paiano, V.; Celeste, G.; Colombo, A.; Davoli, E. Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int. 2014, 68, 16–24. [Google Scholar] [CrossRef]
- Schlegelmilch, M.; Streese, J.; Stegmann, R. Odour management and treatment technologies: An overview. Waste Manag. 2005, 25, 928–939. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Lu, W. VOCs released from municipal solid waste at the initial decomposition stage: Emission characteristics and an odor impact assessment. J. Environ. Sci. 2020, 98, 143–150. [Google Scholar] [CrossRef]
- Bruno, P.; Caselli, M.; de Gennaro, G.; Solito, M.; Tutino, M. Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers. Waste Manag. 2007, 27, 539–544. [Google Scholar] [CrossRef]
- Wu, C.; Shu, M.; Liu, X.; Sang, Y.; Cai, H.; Qu, C.; Liu, J. Characterization of the volatile compounds emitted from municipal solid waste and identification of the key volatile pollutants. Waste Manag. 2020, 103, 314–322. [Google Scholar] [CrossRef]
- Di Foggia, G.; Beccarello, M. Market Structure of Urban Waste Treatment and Disposal: Empirical Evidence from the Italian Industry. Sustainability 2021, 13, 7412. [Google Scholar] [CrossRef]
- Mohammadi, M.; Jämsä-Jounela, S.L.; Harjunkoski, I. Optimal planning of municipal solid waste management systems in an integrated supply chain network. Comput. Chem. Eng. 2019, 123, 155–169. [Google Scholar] [CrossRef]
- Pharino, C. Challenges for Sustainable Solid Waste Management; SpringerBriefs on Case Studies of Sustainable Development; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Jakubus, M.; Michalak-Oparowska, W. Social participation in the biowaste disposal system before and during the COVID-19 pandemic. A case study for Poznań. Environ. Prot. Eng. 2021, 47, 109–123. [Google Scholar] [CrossRef]
- Toledo, M.; Gutiérrez, M.C.; Siles, J.A.; Martín, M.A. Odor mapping of an urban waste management plant: Chemometric approach and correlation between physico-chemical, respirometric and olfactometric variables. J. Clean. Prod. 2019, 210, 1098–1108. [Google Scholar] [CrossRef]
- Gostelow, P.; Parsons, S.A.; Stuetz, R.M. Odour measurements for sewage treatment works. Water Res. 2001, 35, 579–597. [Google Scholar] [CrossRef]
- Standard EN 13725:2003; Air Quality-Determination of Odour Concentration by Dynamic Olfactometry. CEN: Brussels, Belgium, 2003.
- Dincer, F.; Odabasi, M.; Muezzinoglu, A. Chemical characterization of odorous gases at a landfill site by gas chromatography–mass spectrometry. J. Chromatogr. A 2006, 1122, 222–229. [Google Scholar] [CrossRef]
- Francesco, F.D.; Lazzerini, B.; Marcelloni, F.; Pioggia, G. An electronic nose for odour annoyance assessment. Atmos. Environ. 2001, 35, 1225–1234. [Google Scholar] [CrossRef]
- Davoli, E.; Gangai, M.L.; Morselli, L.; Tonelli, D. Characterisation of odorants emissions from landfills by SPME and GC/MS. Chemosphere 2003, 51, 357–368. [Google Scholar] [CrossRef]
- Brattoli, M.; Cisternino, E.; Dambruoso, P.R.; De Gennaro, G.; Giungato, P.; Mazzone, A.; Palmisani, J.; Tutino, M. Gas Chromatography Analysis with Olfactometric Detection (GC-O) as a Useful Methodology for Chemical Characterization of Odorous Compounds. Sensors 2013, 13, 16759–16800. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Liu, J. GC-O-MS technique and its applications in food flavor analysis. Food Res. Int. 2018, 114, 187–198. [Google Scholar] [CrossRef]
- Xu, A.; Chang, H.; Zhao, Y.; Tan, H.; Wang, Y.; Zhang, Y.; Lu, W.; Wang, H. Dispersion simulation of odorous compounds from waste collection vehicles: Mobile point source simulation with ModOdor. Sci. Total. Environ. 2020, 711, 135109. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhu, S.; Chen, X.; Wang, L.; Lou, Z.; Feng, L. Variations and environmental impacts of odor emissions along the waste stream. J. Hazard. Mater. 2020, 384, 120912. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Zhao, Y.; Ling, Y.; Wang, Y.; Wang, X. Emission characteristics and variation of volatile odorous compounds in the initial decomposition stage of municipal solid waste. Waste Manag. 2017, 68, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Curren, J.; Hallis, S.A.; Snyder, C.C.L.; Suffet, I.M.H. Identification and quantification of nuisance odors at a trash transfer station. Waste Manag. 2016, 58, 52–61. [Google Scholar] [CrossRef]
- Chang, H.; Tan, H.; Zhao, Y.; Wang, Y.; Wang, X.; Li, Y.; Lu, W.; Wang, H. Statistical correlations on the emissions of volatile odorous compounds from the transfer stage of municipal solid waste. Waste Manag. 2019, 87, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lu, W.; Wang, H. Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution. J. Hazard. Mater. 2015, 300, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhang, H.; Yang, N.; Shao, L.; He, P. Gaseous pollutants emitted from a mechanical biological treatment plant for municipal solid waste: Odor assessment and photochemical reactivity. J. Air Waste Manag. Assoc. 2013, 63, 1287–1297. [Google Scholar] [CrossRef]
- Fang, J.J.; Yang, N.; Cen, D.Y.; Shao, L.M.; He, P.J. Odor compounds from different sources of landfill: Characterization and source identification. Waste Manag. 2012, 32, 1401–1410. [Google Scholar] [CrossRef]
- Cheng, Z.; Sun, Z.; Zhu, S.; Lou, Z.; Zhu, N.; Feng, L. The identification and health risk assessment of odor emissions from waste landfilling and composting. Sci. Total. Environ. 2019, 649, 1038–1044. [Google Scholar] [CrossRef]
- Yao, X.Z.; Ma, R.C.; Li, H.J.; Wang, C.; Zhang, C.; Yin, S.S.; Wu, D.; He, X.Y.; Wang, J.; Zhan, L.T.; et al. Assessment of the major odor contributors and health risks of volatile compounds in three disposal technologies for municipal solid waste. Waste Manag. 2019, 91, 128–138. [Google Scholar] [CrossRef]
- Szulczyński, B.; Gębicki, J. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments 2017, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, J.; Cerisier, C.; Delva, J.; Romain, A.C. Potential of a network of electronic noses to assess in real time the odour annoyance in the environment of a compost facility. Chem. Eng. Trans. 2012, 30, 133–138. [Google Scholar] [CrossRef]
- Szulczyński, B.; Wasilewski, T.; Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Namieśnik, J.; Gębicki, J. Different Ways to Apply a Measurement Instrument of E-Nose Type to Evaluate Ambient Air Quality with Respect to Odour Nuisance in a Vicinity of Municipal Processing Plants. Sensors 2017, 17, 2671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, M.C.; Chica, A.F.; Martín, M.A.; Romain, A.C. Compost Pile Monitoring Using Different Approaches: GC–MS, E-nose and Dynamic Olfactometry. Waste Biomass Valorization 2014, 5, 469–479. [Google Scholar] [CrossRef]
- Gębicki, J.; Szulczynski, B.; Byliński, H.; Kolasińska, P.; Dymerski, T.; Namieśnik, J. Application of Electronic Nose to Ambient Air Quality Evaluation With Respect to Odour Nuisance in Vicinity of Municipal Landfills and Sewage Treatment. In Electronic Nose Technologies and Advances in Machine Olfaction; IGI Global: Hershey, PA, USA, 2018; pp. 175–201. [Google Scholar] [CrossRef]
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic Nose and Its Applications: A Survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S.; Bandyopadhyay, R.; Bhattacharyya, N.; Pandey, R.A.; Jana, A. Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring—An overview. Talanta 2015, 144, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Conti, C.; Guarino, M.; Bacenetti, J. Measurements techniques and models to assess odor annoyance: A review. Environ. Int. 2020, 134, 105261. [Google Scholar] [CrossRef]
- Bax, C.; Sironi, S.; Capelli, L. How Can Odors Be Measured? An Overview of Methods and Their Applications. Atmosphere 2020, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Li, L.; Zhao, X.; Peng, Y.; Yang, P.; Peng, X. Anaerobic digestion: A review on process monitoring. Renew. Sustain. Energy Rev. 2019, 103, 1–12. [Google Scholar] [CrossRef]
- Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Eke, I.E.; Nwankwoala, M.O.; Iroh, I.N.; Ezeogu, L.I. Composting technology in waste stabilization: On the methods, challenges and future prospects. J. Environ. Manag. 2017, 190, 140–157. [Google Scholar] [CrossRef]
- Standard ASTM E679-19; Standard Practice for Determination of Odor and Taste Thresholds by a Forced-Choice Ascending Concentration Series Method of Limits. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019. [CrossRef]
- Standard AS/NZS 4323.3-2001; Stationary Source Emissions—Part 3: Determination of Odour Concentration by Dynamic Olfactometry. Standards Australia: Sydney, Australia; Standards New Zealand: Wellington, New Zealand, 2001.
- Hawko, C.; Verriele, M.; Hucher, N.; Crunaire, S.; Leger, C.; Locoge, N.; Savary, G. A review of environmental odor quantification and qualification methods: The question of objectivity in sensory analysis. Sci. Total. Environ. 2021, 795, 148862. [Google Scholar] [CrossRef] [PubMed]
- Standard VDI 3882 Blatt 1:1992-10; Determination of Odour Intensity. VDI (Verein Deutscher Ingenieure): Düsseldorf, Germany, 1992.
- Sarkar, U.; Hobbs, S.E. Odour from municipal solid waste (MSW) landfills: A study on the analysis of perception. Environ. Int. 2002, 27, 655–662. [Google Scholar] [CrossRef]
- Sobczyński, P.; Sówka, I.; Miller, U. Dynamic Olfactometry and Modelling as Methods for the Assessment of Odour Impact of Public Utility Objects; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2016; Available online: http://epe.pwr.wroc.pl/index.html (accessed on 8 February 2022). [CrossRef]
- Sówka, I.; Pawnuk, M.; Grzelka, A.; Pielichowska, A. The use of ordinary kriging and inverse distance weighted interpolation to assess the odour impact of a poultry farming. Sci. Rev. Eng. Environ. Sci. 2020, 2020, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Sówka, I.; Pawnuk, M.; Miller, U.; Grzelka, A.; Wroniszewska, A.; Bezyk, Y. Assessment of the Odour Impact Range of a Selected Agricultural Processing Plant. Sustainability 2020, 12, 7289. [Google Scholar] [CrossRef]
- Pawnuk, M.; Sówka, I. Application of mathematical modelling in evaluation of odour nuisance from selected waste management plant. E3S Web Conf. 2019, 100, 00063. [Google Scholar] [CrossRef] [Green Version]
- Badach, J.; Kolasińska, P.; Paciorek, M.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Dymnicka, M.; Namieśnik, J. A case study of odour nuisance evaluation in the context of integrated urban planning. J. Environ. Manag. 2018, 213, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Motalebi Damuchali, A.; Guo, H. Evaluation of a field olfactometer in odour concentration measurement. Biosyst. Eng. 2019, 187, 239–246. [Google Scholar] [CrossRef]
- Naddeo, V.; Zarra, T.; Oliva, G.; Chiavola, A.; Vivarelli, A.; Cardona, G. Odour impact assessment of a large municipal solid waste landfill under different working phases. Glob. Nest J. 2018, 20, 654–658. [Google Scholar] [CrossRef]
- Tagliaferri, F.; Invernizzi, M.; Sironi, S.; Capelli, L. Influence of Modelling Choices on the Results of Landfill Odour Dispersion. Detritus 2020, 12, 92–99. [Google Scholar] [CrossRef]
- Gutiérrez, M.C.; Martín, M.A.; Serrano, A.; Chica, A.F. Monitoring of pile composting process of OFMSW at full scale and evaluation of odour emission impact. J. Environ. Manag. 2015, 151, 531–539. [Google Scholar] [CrossRef]
- Sówka, I.; Miller, U.; Grzelka, A. The application of dynamic olfactometry in evaluating the efficiency of purifying odorous gases by biofiltration. Environ. Prot. Eng. 2017, 43, 233–242. [Google Scholar] [CrossRef]
- Gutiérrez, M.C.; Martín, M.A.; Pagans, E.; Vera, L.; García-Olmo, J.; Chica, A.F. Dynamic olfactometry and GC–TOFMS to monitor the efficiency of an industrial biofilter. Sci. Total. Environ. 2015, C, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewska, M.; Kulig, A.; Lelicińska-Serafin, K. Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Arch. Environ. Prot. 2020, 46, 60–68. [Google Scholar] [CrossRef]
- Pojmanová, P.; Ladislavová, N.; Škeříková, V.; Kania, P.; Urban, Š. Human scent samples for chemical analysis. Chem. Pap. 2020, 74, 1383–1393. [Google Scholar] [CrossRef] [Green Version]
- Capelli, L.; Sironi, S.; Rosso, R.D.; Céntola, P.; Grande, M.I. A comparative and critical evaluation of odour assessment methods on a landfill site. Atmos. Environ. 2008, 30, 7050–7058. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Bianchi, G.; Davoli, E. Olfactory and toxic impact of industrial odour emissions. Water Sci. Technol. 2012, 66, 1399–1406. [Google Scholar] [CrossRef]
- Audouin, V.; Bonnet, F.; Vickers, Z.M.; Reineccius, G.A. Limitations in the Use of Odor Activity Values to Determine Important Odorants in Foods. In Gas Chromatography-Olfactometry; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2001; Volume 782, pp. 156–171. [Google Scholar] [CrossRef]
- Jarauta, I.; Ferreira, V.; Cacho, J.F. Synergic, additive and antagonistic effects between odorants with similar odour properties. In Developments in Food Science; Bredie, W.L.P., Petersen, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 43, pp. 205–208. [Google Scholar] [CrossRef]
- Zhang, S.; Cai, L.; Koziel, J.A.; Hoff, S.J.; Schmidt, D.R.; Clanton, C.J.; Jacobson, L.D.; Parker, D.B.; Heber, A.J. Field air sampling and simultaneous chemical and sensory analysis of livestock odorants with sorbent tubes and GC-MS/olfactometry. Sens. Actuators B Chem. 2010, 146, 427–432. [Google Scholar] [CrossRef]
- Zhang, S.; Koziel, J.A.; Cai, L.; Hoff, S.J.; Heathcote, K.Y.; Chen, L.; Jacobson, L.D.; Akdeniz, N.; Hetchler, B.P.; Parker, D.B.; et al. Odor and Odorous Chemical Emissions from Animal Buildings: Part 5. Simultaneous Chemical and Sensory Analysis with Gas Chromatography-Mass Spectrometry-Olfactometry. Trans. ASABE 2015, 58, 1349–1359. [Google Scholar] [CrossRef] [Green Version]
- Stetter, J.R.; Li, J. Amperometric Gas SensorsA Review. Chem. Rev. 2008, 108, 352–366. [Google Scholar] [CrossRef]
- Cao, Z.; Buttner, W.J.; Stetter, J.R. The properties and applications of amperometric gas sensors. Electroanalysis 1992, 4, 253–266. [Google Scholar] [CrossRef]
- Dinh, T.V.; Choi, I.Y.; Son, Y.S.; Kim, J.C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- López, R.; Giráldez, I.; Palma, A.; Jesús Díaz, M. Assessment of compost maturity by using an electronic nose. Waste Manag. 2016, 48, 174–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komilis, D.P.; Ham, R.K.; Park, J.K. Emission of volatile organic compounds during composting of municipal solid wastes. Water Res. 2004, 38, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Agapios, A.; Andreas, V.; Marinos, S.; Katerina, M.; Antonis, Z.A. Waste aroma profile in the framework of food waste management through household composting. J. Clean. Prod. 2020, 257, 120340. [Google Scholar] [CrossRef]
- Pagans, E.l.; Font, X.; Sánchez, A. Biofiltration for ammonia removal from composting exhaust gases. Chem. Eng. J. 2005, 113, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Wiśniewska, M.; Kulig, A.; Lelicińska-Serafin, K. The Use of Chemical Sensors to Monitor Odour Emissions at Municipal Waste Biogas Plants. Appl. Sci. 2021, 11, 3916. [Google Scholar] [CrossRef]
- Mabrouki, J.; Azrour, M.; Fattah, G.; Dhiba, D.; Hajjaji, S.E. Intelligent monitoring system for biogas detection based on the Internet of Things: Mohammedia, Morocco city landfill case. Big Data Min. Anal. 2021, 4, 10–17. [Google Scholar] [CrossRef]
- Kośmider, J.; Mazur-Chrzanowska, B.; Wyszyński, B. Odory; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2002. [Google Scholar]
- Gu, X.; Karp, P.H.; Brody, S.L.; Pierce, R.A.; Welsh, M.J.; Holtzman, M.J.; Ben-Shahar, Y. Chemosensory Functions for Pulmonary Neuroendocrine Cells. Am. J. Respir. Cell Mol. Biol. 2014, 50, 637–646. [Google Scholar] [CrossRef] [Green Version]
- Korsching, S.I. Olfactory Receptors. In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, W.J., Lane, M.D., Eds.; Academic Press: Waltham, MA, USA, 2013; pp. 345–349. [Google Scholar] [CrossRef]
- Cheng, L.; Meng, Q.H.; Lilienthal, A.J.; Qi, P.F. Development of compact electronic noses: A review. Meas. Sci. Technol. 2021, 32, 062002. [Google Scholar] [CrossRef]
- Zohora, S.E.; Khan, A.M.; Hundewale, N. Chemical Sensors Employed in Electronic Noses: A Review. In Advances in Computing and Information Technology; Meghanathan, N., Nagamalai, D., Chaki, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 177–184. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, M.; Adhikari, B. Advances of electronic nose and its application in fresh foods: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2700–2710. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A.; Chmielewski, J. Electronic Nose as a Tool for Monitoring the Authenticity of Food. A Review. Food Anal. Methods 2017, 10, 1800–1816. [Google Scholar] [CrossRef] [Green Version]
- Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic noses: Powerful tools in meat quality assessment. Meat Sci. 2017, 131, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic noses in classification and quality control of edible oils: A review. Food Chem. 2018, 246, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Seesaard, T.; Goel, N.; Kumar, M.; Wongchoosuk, C. Advances in gas sensors and electronic nose technologies for agricultural cycle applications. Comput. Electron. Agric. 2022, 193, 106673. [Google Scholar] [CrossRef]
- Cui, S.; Ling, P.; Zhu, H.; Keener, H.M. Plant Pest Detection Using an Artificial Nose System: A Review. Sensors 2018, 18, 378. [Google Scholar] [CrossRef] [Green Version]
- Farraia, M.V.; Cavaleiro Rufo, J.; Paciência, I.; Mendes, F.; Delgado, L.; Moreira, A. The electronic nose technology in clinical diagnosis: A systematic review. Porto Biomed. J. 2019, 4, e42. [Google Scholar] [CrossRef] [PubMed]
- Voss, A.; Witt, K.; Kaschowitz, T.; Poitz, W.; Ebert, A.; Roser, P.; Bär, K.J. Detecting Cannabis Use on the Human Skin Surface via an Electronic Nose System. Sensors 2014, 14, 13256–13272. [Google Scholar] [CrossRef] [Green Version]
- Wasilewski, T.; Gębicki, J.; Kamysz, W. Bio-inspired approaches for explosives detection. TrAC Trends Anal. Chem. 2021, 142, 116330. [Google Scholar] [CrossRef]
- Gardner, J.W. Review of Conventional Electronic Noses and Their Possible Application to the Detection of Explosives. In Electronic Noses & Sensors for the Detection of Explosives; Gardner, J.W., Yinon, J., Eds.; NATO Science Series II: Mathematics, Physics and Chemistry; Springer: Dordrecht, The Netherlands, 2004; pp. 1–28. [Google Scholar] [CrossRef]
- Scorsone, E.; Pisanelli, A.M.; Persaud, K.C. Development of an electronic nose for fire detection. Sens. Actuators B Chem. 2006, 116, 55–61. [Google Scholar] [CrossRef]
- Chen, Y.T.; Samborsky, Z.; Shrestha, S. Electronic nose for ambient detection and monitoring. In Advanced Environmental, Chemical, and Biological Sensing Technologies XIV; SPIE: Bellingham, WA, USA, 2017; Volume 10215, pp. 73–81. [Google Scholar] [CrossRef]
- Wilson, A.D. Review of Electronic-nose Technologies and Algorithms to Detect Hazardous Chemicals in the Environment. Procedia Technol. 2012, 1, 453–463. [Google Scholar] [CrossRef] [Green Version]
- John, A.T.; Murugappan, K.; Nisbet, D.R.; Tricoli, A. An Outlook of Recent Advances in Chemiresistive Sensor-Based Electronic Nose Systems for Food Quality and Environmental Monitoring. Sensors 2021, 21, 2271. [Google Scholar] [CrossRef] [PubMed]
- Alassi, A.; Benammar, M.; Brett, D. Quartz Crystal Microbalance Electronic Interfacing Systems: A Review. Sensors 2017, 17, 2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabri, N.; Aljunid, S.A.; Salim, M.S.; Ahmad, R.B.; Kamaruddin, R. Toward Optical Sensors: Review and Applications. J. Phys. Conf. Ser. 2013, 423, 012064. [Google Scholar] [CrossRef]
- Sharma, S.; Madou, M. A new approach to gas sensing with nanotechnology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 2448–2473. [Google Scholar] [CrossRef] [PubMed]
- Zappa, D.; Galstyan, V.; Kaur, N.; Munasinghe Arachchige, H.M.M.; Sisman, O.; Comini, E. “Metal oxide -based heterostructures for gas sensors”—A review. Anal. Chim. Acta 2018, 1039, 1–23. [Google Scholar] [CrossRef]
- Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B Chem. 2014, 204, 250–272. [Google Scholar] [CrossRef]
- Jońca, J.; Ryzhikov, A.; Kahn, M.L.; Fajerwerg, K.; Chapelle, A.; Menini, P.; Fau, P. SnO2 “Russian Doll” Octahedra Prepared by Metalorganic Synthesis: A New Structure for Sub-ppm CO Detection. Chem. A Eur. J. 2016, 22, 10127–10135. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. Chemiresistive polyaniline-based gas sensors: A mini review. Sens. Actuators B Chem. 2015, 220, 534–548. [Google Scholar] [CrossRef]
- Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef] [Green Version]
- Wong, Y.C.; Ang, B.C.; Haseeb, A.S.M.A.; Baharuddin, A.A.; Wong, Y.H. Review—Conducting Polymers as Chemiresistive Gas Sensing Materials: A Review. J. Electrochem. Soc. 2019, 167, 037503. [Google Scholar] [CrossRef]
- Su, P.G.; Peng, Y.T. Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization. Sens. Actuators B Chem. 2014, 193, 637–643. [Google Scholar] [CrossRef]
- Hangarter, C.M.; Chartuprayoon, N.; Hernández, S.C.; Choa, Y.; Myung, N.V. Hybridized conducting polymer chemiresistive nano-sensors. Nano Today 2013, 8, 39–55. [Google Scholar] [CrossRef]
- Cui, S.; Pu, H.; Lu, G.; Wen, Z.; Mattson, E.C.; Hirschmugl, C.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J. Fast and Selective Room-Temperature Ammonia Sensors Using Silver Nanocrystal-Functionalized Carbon Nanotubes. ACS Appl. Mater. Interfaces 2012, 4, 4898–4904. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, P.; Sharma, A.; Tomar, M.; Gupta, V. A comparative study of RGO-SnO2 and MWCNT-SnO2 nanocomposites based SO2 gas sensors. Sens. Actuators B Chem. 2017, 248, 980–986. [Google Scholar] [CrossRef]
- Mao, S.; Lu, G.; Chen, J. Nanocarbon-based gas sensors: Progress and challenges. J. Mater. Chem. A 2014, 2, 5573–5579. [Google Scholar] [CrossRef] [Green Version]
- Varghese, S.S.; Lonkar, S.; Singh, K.K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 2015, 218, 160–183. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Liu, Q. Gas Sensors Based on Molecular Imprinting Technology. Sensors 2017, 17, 1567. [Google Scholar] [CrossRef] [Green Version]
- Gaggiotti, S.; Della Pelle, F.; Mascini, M.; Cichelli, A.; Compagnone, D. Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis. Sensors 2020, 20, 4433. [Google Scholar] [CrossRef]
- Burgués, J.; Marco, S. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors. Sensors 2018, 18, 339. [Google Scholar] [CrossRef] [Green Version]
- Schaller, E.; Bosset, J.O.; Escher, F. ‘Electronic Noses’ and Their Application to Food. LWT-Food Sci. Technol. 1998, 31, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Shi, Y.; Hou, Z.; Wei, L. Carbon Nanotube-Based Chemiresistive Sensors. Sensors 2017, 17, 882. [Google Scholar] [CrossRef] [PubMed]
- Dymerski, T.M.; Chmiel, T.M.; Wardencki, W. Invited Review Article: An odor-sensing system—powerful technique for foodstuff studies. Rev. Sci. Instrum. 2011, 82, 111101. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Xu, J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Kirsanov, D.; Correa, D.S.; Gaal, G.; Riul, A.; Braunger, M.L.; Shimizu, F.M.; Oliveira, O.N.; Liang, T.; Wan, H.; Wang, P.; et al. Electronic Tongues for Inedible Media. Sensors 2019, 19, 5113. [Google Scholar] [CrossRef] [Green Version]
- Arshak, K.; Moore, E.; Lyons, G.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Albert, K.J.; Lewis, N.S.; Schauer, C.L.; Sotzing, G.A.; Stitzel, S.E.; Vaid, T.P.; Walt, D.R. Cross-Reactive Chemical Sensor Arrays. Chem. Rev. 2000, 100, 2595–2626. [Google Scholar] [CrossRef]
- He, J.; Xu, L.; Wang, P.; Wang, Q. A high precise E-nose for daily indoor air quality monitoring in living environment. Integration 2017, 58, 286–294. [Google Scholar] [CrossRef]
- Wilson, A.D.; Baietto, M. Applications and Advances in Electronic-Nose Technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef]
- Llobet, E.; Gualdrón, O.; Vinaixa, M.; El-Barbri, N.; Brezmes, J.; Vilanova, X.; Bouchikhi, B.; Gómez, R.; Carrasco, J.A.; Correig, X. Efficient feature selection for mass spectrometry based electronic nose applications. Chemom. Intell. Lab. Syst. 2007, 85, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Burian, C.; Brezmes, J.; Vinaixa, M.; Cañellas, N.; Llobet, E.; Vilanova, X.; Correig, X. MS-electronic nose performance improvement using the retention time dimension and two-way and three-way data processing methods. Sens. Actuators B Chem. 2010, 2, 759–768. [Google Scholar] [CrossRef]
- Martí, M.P.; Busto, O.; Guasch, J.; Boqué, R. Electronic noses in the quality control of alcoholic beverages. TrAC Trends Anal. Chem. 2005, 24, 57–66. [Google Scholar] [CrossRef]
- Chen, Y.P.; Cai, D.; Li, W.; Blank, I.; Liu, Y. Application of gas chromatography-ion mobility spectrometry (GC-IMS) and ultrafast gas chromatography electronic-nose (uf-GC E-nose) to distinguish four Chinese freshwater fishes at both raw and cooked status. J. Food Biochem. 2021, e13840. [Google Scholar] [CrossRef] [PubMed]
- Rottiers, H.; Tzompa Sosa, D.A.; Van de Vyver, L.; Hinneh, M.; Everaert, H.; De Wever, J.; Messens, K.; Dewettinck, K. Discrimination of Cocoa Liquors Based on Their Odor Fingerprint: A Fast GC Electronic Nose Suitability Study. Food Anal. Methods 2019, 12, 475–488. [Google Scholar] [CrossRef]
- Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Poultry meat freshness evaluation using electronic nose technology and ultra-fast gas chromatography. Monatshefte Chem.-Chem. Mon. 2017, 148, 1631–1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebicki, J.; Dymerski, T.; Namiesnik, J. Monitoring of Odour Nuisance from Landfill Using Electronic Nose. Chem. Eng. Trans. 2014, 40, 85–90. [Google Scholar] [CrossRef]
- Gębicki, J.; Dymerski, T.; Namieśnik, J. Investigation of Air Quality beside a Municipal Landfill: The Fate of Malodour Compounds as a Model VOC. Environments 2017, 4, 7. [Google Scholar] [CrossRef]
- Dymerski, T.; Gębicki, J.; Namieśnik, J. Comparison of Evaluation of Air Odour Quality in Vicinity of Petroleum Plant Using a Prototype of Electronic Nose Instrument and Fast GC Technique. Chem. Eng. Trans. 2016, 54, 259–264. [Google Scholar] [CrossRef]
- Che Harun, F.K.; Covington, J.A.; Gardner, J.W. Mimicking the biological olfactory system: A Portable electronic Mucosa. IET Nanobiotechnol. 2012, 6, 45–51. [Google Scholar] [CrossRef]
- Comon, P. Independent component analysis, A new concept? Signal Process. 1994, 36, 287–314. [Google Scholar] [CrossRef]
- Wold, S.; Antti, H.; Lindgren, F.; Öhman, J. Orthogonal signal correction of near-infrared spectra. Chemom. Intell. Lab. Syst. 1998, 44, 175–185. [Google Scholar] [CrossRef]
- Aparicio, R.; Rocha, S.M.; Delgadillo, I.; Morales, M.T. Detection of Rancid Defect in Virgin Olive Oil by the Electronic Nose. J. Agric. Food Chem. 2000, 48, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Melucci, D.; Bendini, A.; Tesini, F.; Barbieri, S.; Zappi, A.; Vichi, S.; Conte, L.; Gallina Toschi, T. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem. 2016, 204, 263–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziyatdinov, A.; Marco, S.; Chaudry, A.; Persaud, K.; Caminal, P.; Perera, A. Drift compensation of gas sensor array data by common principal component analysis. Sens. Actuators B Chem. 2010, 146, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Padilla, M.; Perera, A.; Montoliu, I.; Chaudry, A.; Persaud, K.; Marco, S. Drift compensation of gas sensor array data by Orthogonal Signal Correction. Chemom. Intell. Lab. Syst. 2010, 100, 28–35. [Google Scholar] [CrossRef]
- Carmel, L.; Levy, S.; Lancet, D.; Harel, D. A feature extraction method for chemical sensors in electronic noses. Sens. Actuators B Chem. 2003, 93, 67–76. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, C.; Zeng, D.; Zhang, Q.; Li, H.; Bi, Z. A feature extraction method and a sampling system for fast recognition of flammable liquids with a portable E-nose. Sens. Actuators B Chem. 2007, 124, 437–443. [Google Scholar] [CrossRef]
- Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic Nose Feature Extraction Methods: A Review. Sensors 2015, 15, 27804–27831. [Google Scholar] [CrossRef]
- Galdikas, A.; Mironas, A.; Senulienė, D.; Strazdienė, V.; Šetkus, A.; Zelenin, D. Response time based output of metal oxide gas sensors applied to evaluation of meat freshness with neural signal analysis. Sens. Actuators B Chem. 2000, 3, 258–265. [Google Scholar] [CrossRef]
- Hines, E.L.; Llobet, E.; Gardner, J.W. Electronic noses: A review of signal processing techniques. IEE Proc.-Circuits Devices Syst. 1999, 146, 297–310. [Google Scholar] [CrossRef]
- Xu, S.; Sun, X.; Lü, E.; Lu, H. A modified mean deviation threshold function based on fast Fourier transform and its application in litchi rest storage life recognition using an electronic nose. J. Food Meas. Charact. 2018, 12, 867–876. [Google Scholar] [CrossRef]
- Lamagna, A.; Reich, S.; Rodriguez, D.; Scoccola, N.N. Performance of an e-nose in hops classification. Sens. Actuators B Chem. 2004, 102, 278–283. [Google Scholar] [CrossRef]
- Pornpanomchai, C.; Suthamsmai, N. Beer classification by electronic nose. In Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, China, 30–31 August 2008; Volume 1, pp. 333–338. [Google Scholar] [CrossRef]
- Llobet, E.; Brezmes, J.; Ionescu, R.; Vilanova, X.; Al-Khalifa, S.; Gardner, J.W.; Bârsan, N.; Correig, X. Wavelet transform and fuzzy ARTMAP-based pattern recognition for fast gas identification using a micro-hotplate gas sensor. Sens. Actuators B Chem. 2002, 1-3, 238–244. [Google Scholar] [CrossRef]
- Tian, F.; Xuntao, X.; Yue, S.; Jia, Y.; Qinghua, H.; Jianwei, M.; Tao, L. Detection of Wound Pathogen by an Intelligent Electronic Nose. Sens. Mater. 2009, 21, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Gardner, J.W.; Hines, E.L.; Tang, H.C. Detection of vapours and odours from a multisensor array using pattern-recognition techniques Part 2. Artificial neural networks. Sens. Actuators B Chem. 1992, 9, 9–15. [Google Scholar] [CrossRef]
- Cholet, F. Deep Learning with Python; Helion: Gliwice, Poland, 2019; ISBN 9781617294433. [Google Scholar]
- Natale, C.D.; Marco, S.; Davide, F.; D’Amico, A. Sensor-array calibration time reduction by dynamic modelling. Sens. Actuators B Chem. 1995, 1–3, 578–583. [Google Scholar] [CrossRef]
- Homer, M.; Shevade, A.; Lara, L.; Huerta, R.; Vergara, A.; Muezzinoglu, M. Rapid Analysis, Self-Calibrating Array for Air Monitoring. In Proceedings of the 42nd International Conference on Environmental Systems, San Diego, CA, USA, 15–19 July 2012; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Cheng, Y. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 790–799. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, C.C.; Reddy, C.K. (Eds.) Data Clustering: Algorithms and Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press, Inc.: Oxford, UK, 1995. [Google Scholar]
- Cristianini, N.; Scholkopf, B. Support Vector Machines and Kernel Methods: The New Generation of Learning Machines. AI Mag. 2002, 23, 31. [Google Scholar] [CrossRef]
- Muezzinoglu, M.K.; Vergara, A.; Huerta, R. A unified framework for Volatile Organic Compound classification and regression. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–7. [Google Scholar] [CrossRef]
- Pardo, M.; Sberveglieri, G. Classification of electronic nose data with support vector machines. Sens. Actuators B Chem. 2005, 107, 730–737. [Google Scholar] [CrossRef]
- Zanaty, E.A. Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification. Egypt. Inform. J. 2012, 13, 177–183. [Google Scholar] [CrossRef]
- Wei, G.; Zhao, J.; Yu, Z.; Feng, Y.; Li, G.; Sun, X. An Effective Gas Sensor Array Optimization Method Based on Random Forest. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Kodogiannis, V.S.; Lygouras, J.N.; Tarczynski, A.; Chowdrey, H.S. Artificial odor discrimination system using electronic nose and neural networks for the identification of urinary tract infection. IEEE Trans. Inf. Technol. Biomed. A Publ. IEEE Eng. Med. Biol. Soc. 2008, 12, 707–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Lujan, I.; Fonollosa, J.; Vergara, A.; Homer, M.; Huerta, R. On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemom. Intell. Lab. Syst. 2014, 130, 123–134. [Google Scholar] [CrossRef]
- Giungato, P.; de Gennaro, G.; Barbieri, P.; Briguglio, S.; Amodio, M.; de Gennaro, L.; Lasigna, F. Improving recognition of odors in a waste management plant by using electronic noses with different technologies, gas chromatography–mass spectrometry/olfactometry and dynamic olfactometry. J. Clean. Prod. 2016, 133, 1395–1402. [Google Scholar] [CrossRef]
- Fan, H.; Bennetts, V.H.; Schaffernicht, E.; Lilienthal, A.J. A cluster analysis approach based on exploiting density peaks for gas discrimination with electronic noses in open environments. Sens. Actuators B Chem. 2018, 259, 183–203. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Kadri, C.; Zhang, L.; Feng, J.; Juan, L.; Na, P. A Novel Cost-Effective Portable Electronic Nose for Indoor-/In-Car Air Quality Monitoring. In Proceedings of the 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Zhangjiajie, China, 5–6 March 2012; pp. 4–8. [Google Scholar] [CrossRef]
- Vergara, A.; Fonollosa, J.; Mahiques, J.; Trincavelli, M.; Rulkov, N.; Huerta, R. On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines. Sens. Actuators B Chem. 2013, 185, 462–477. [Google Scholar] [CrossRef] [Green Version]
- Hayasaka, T.; Lin, A.; Copa, V.C.; Lopez, L.P.; Loberternos, R.A.; Ballesteros, L.I.M.; Kubota, Y.; Liu, Y.; Salvador, A.A.; Lin, L. An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol. Microsyst. Nanoeng. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Kim, Y.W.; Park, H.B.; Lee, I.S.; Cho, J.H. Portable Electronic Nose System for Identification of Synthesized Gasoline Using Metal Oxide Gas Sensor and Pattern Recognition. AIP Conf. Proc. 2011, 1362, 113–114. [Google Scholar] [CrossRef]
- Shahid, A.; Choi, J.H.; Rana, A.u.H.S.; Kim, H.S. Least Squares Neural Network-Based Wireless E-Nose System Using an SnO2 Sensor Array. Sensors 2018, 18, 1446. [Google Scholar] [CrossRef] [Green Version]
- Mamat, M.; Samad, S.A.; Hannan, M.A. An Electronic Nose for Reliable Measurement and Correct Classification of Beverages. Sensors 2011, 11, 6435–6453. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, A.H.; Shakaff, A.Y.M.; Adom, A.H.; Zakaria, A.; Saad, F.S.A.; Kamarudin, L.M. Chicken Farm Malodour Monitoring Using Portable Electronic Nose System. Chem. Eng. Trans. 2012, 30, 55–60. [Google Scholar] [CrossRef]
- Vapnik, V.; Golowich, S.E.; Smola, A. Support vector method for function approximation, regression estimation and signal processing. In Proceedings of the 9th International Conference on Neural Information Processing Systems (NIPS’96), Denver, CO, USA, 3–5 December 1996; MIT Press: Cambridge, MA, USA, 1996; pp. 281–287. [Google Scholar]
- Williamson, R.C.; Smola, A.J.; Schölkopf, B. Entropy Numbers, Operators and Support Vector Kernels. In Computational Learning Theory; Fischer, P., Simon, H.U., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1999; pp. 285–299. [Google Scholar] [CrossRef]
- Monroy, J.G.; Gonzalez-Jimenez, J.; Sanchez-Garrido, C. Monitoring household garbage odors in urban areas through distribution maps. In Proceedings of the 2014 IEEE SENSORS, Valencia, Spain, 2–5 November 2014; pp. 1364–1367. [Google Scholar] [CrossRef]
- Romain, A.C.; Godefroid, D.; Kuske, M.; Nicolas, J. Monitoring the exhaust air of a compost pile as a process variable with an e-nose. Sens. Actuators B Chem. 2005, 1, 29–35. [Google Scholar] [CrossRef]
- López, R.; Cabeza, I.O.; Giráldez, I.; Díaz, M.J. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresour. Technol. 2011, 102, 7984–7993. [Google Scholar] [CrossRef] [PubMed]
- Lieberzeit, P.A.; Rehman, A.; Najafi, B.; Dickert, F.L. Real-life application of a QCM-based e-nose: Quantitative characterization of different plant-degradation processes. Anal. Bioanal. Chem. 2008, 391, 2897–2903. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008, 99, 7928–7940. [Google Scholar] [CrossRef] [PubMed]
- Adam, G.; Lemaigre, S.; Romain, A.C.; Nicolas, J.; Delfosse, P. Evaluation of an electronic nose for the early detection of organic overload of anaerobic digesters. Bioprocess Biosyst. Eng. 2013, 36, 23–33. [Google Scholar] [CrossRef]
- Adam, G.; Lemaigre, S.; Goux, X.; Delfosse, P.; Romain, A.C. Upscaling of an electronic nose for completely stirred tank reactor stability monitoring from pilot-scale to real-scale agricultural co-digestion biogas plant. Bioresour. Technol. 2015, 178, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Maria Tangorra, F.; Zaninelli, M.; Oberti, R.; Guidobono Cavalchini, A.; Savoini, G.; Lazzari, M. Evaluating an e-nose ability to detect biogas plant efficiency: A case study. Ital. J. Anim. Sci. 2016, 15, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Orzi, V.; Cadena, E.; D’Imporzano, G.; Artola, A.; Davoli, E.; Crivelli, M.; Adani, F. Potential odour emission measurement in organic fraction of municipal solid waste during anaerobic digestion: Relationship with process and biological stability parameters. Bioresour. Technol. 2010, 101, 7330–7337. [Google Scholar] [CrossRef] [PubMed]
- Romain, A.C.; Delva, J.; Nicolas, J. Complementary approaches to measure environmental odours emitted by landfill areas. Sens. Actuators B Chem. 2008, 131, 18–23. [Google Scholar] [CrossRef]
- Romain, A.C.; André, P.; Nicolas, J. Three years experiment with the same tin oxide sensor arrays for the identification of malodorous sources in the environment. Sens. Actuators B Chem. 2002, 84, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Capelli, L.; Sironi, S.; Dentoni, L.; Del Rosso, R.; Centola, P.; Dematte, F.; Della Torre, M.; Ricco, I. An innovative system for the continuous monitoring of environmental odours: Results of laboratory and field tests. Chem. Eng. Trans. 2010, 23, 309–314. [Google Scholar] [CrossRef]
- Sironi, S.; Capelli, L.; Céntola, P.; Rosso, R.D.; Grande, M.I. Continuous monitoring of odours from a composting plant using electronic noses. Waste Manag. 2007, 3, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Dentoni, L.; Capelli, L.; Sironi, S.; Rosso, R.D.; Zanetti, S.; Torre, M.D. Development of an Electronic Nose for Environmental Odour Monitoring. Sensors 2012, 12, 14363–14381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sironi, S.; Capelli, L.; Céntola, P.; Del Rosso, R. Development of a system for the continuous monitoring of odours from a composting plant: Focus on training, data processing and results validation methods. Sens. Actuators B Chem. 2007, 124, 336–346. [Google Scholar] [CrossRef]
- Eusebio, L.; Capelli, L.; Sironi, S. Electronic Nose Testing Procedure for the Definition of Minimum Performance Requirements for Environmental Odor Monitoring. Sensors 2016, 16, 1548. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, J.; Cors, M.; Romain, A.C.; Delva, J. Identification of odour sources in an industrial park from resident diaries statistics. Atmos. Environ. 2010, 44, 1623–1631. [Google Scholar] [CrossRef]
- Szulczyński, B.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Instrumental measurement of odour nuisance in city agglomeration using electronic nose. E3S Web Conf. 2018, 28, 01012. [Google Scholar] [CrossRef] [Green Version]
- Burgués, J.; Marco, S. Environmental chemical sensing using small drones: A review. Sci. Total. Environ. 2020, 748, 141172. [Google Scholar] [CrossRef]
Stage of the Waste Management | List of Detected Substances | References |
---|---|---|
Collection and transport | ethanol, dimethyl sulfide, methyl mercaptan, dimethyl disulfide, propylene, ethyl acetate, NH3, methacrolein, benzene, toluene, ethylbenzene, methyl chloride and m-,p-xylene | [7,22,23,24] |
Waste transfer stations | ethanol, methyl mercaptan, dimethyl disulfide, H2S, propanal, m,p-xylene, methacrolein, acrolein, NH3, benzene, toluene, acetaldehyde, acetic acid, and butyric acid. | [23,25,26,27] |
MBT facilities | acetic acid, butyric acid, valeric acid, isovaleric acid, and dimethyl sulfide | [28] |
Landfills | H2S, methanethiol, dimethyl disulfide, carbon disulfide, diethyl disulfide, benzene, NH3, ethyl acetate, ethylbenzene, p-ethyltoluene, n-hexane, 1,2-dichlorobenzene, trichloroethylene, styrene, m-xylene, toluene, p-xylene, acetone, methanol, n-butanone, acetic acid, and 2-octanone | [29,30,31] |
Measurement Method | Chemical | Sensory | Continuous |
---|---|---|---|
Olfactometry | no | yes | no |
GC-MS | yes | no | no |
GC-O-MS | yes | partially | no |
Single sensors | yes | no | yes |
E-nose (training with GC-MS) | yes | no | yes |
E-nose (training with olfactometry) | no | partially | yes |
Application | Methodology | Main Outcome of the Work | Ref. |
---|---|---|---|
Odor impact assessment | Dynamic olfactometry, “Operat Fb” dispersion model | Landfill was mainly responsible for odor nuisance caused by the waste management plants | [52] |
Odor impact assessment | Dynamic olfactometry, CALPUFF dispersion model | Dispersion models are efficient tools for odor mitigation strategies investigation | [55] |
Odor impact assessment | Dynamic olfactometry, CALPUFF dispersion model | Modeling choices may lead to a variance in the resulting odor concentrations | [56] |
Odor impact assessment | Field olfactometry, CALPUFF dispersion model | Exposure to odor nuisance is an important factor in urban areas management and planning | [53] |
Composting process monitoring | Dynamic olfactometry (supported by physical-chemical and respirometry measurements) | Dynamic olfactometry is a sufficient and simple method to assess compost stability | [57] |
Monitoring of anaerobic digestion process | Field olfactometry (supported by GC-PID) | Field olfactometry can be used for both, odor impact assessment and monitoring of anaerobic digestion processes | [60] |
(Bio)filtration efficiency assessment | Dynamic olfactometry | Organic filter presents higher deodorization efficiency than mineral one | [58] |
Application | Methodology | Main Outcome of the Work | Ref. |
---|---|---|---|
Monitoring of VOCs released during initial stages of waste treatment | GC-MS, calculation of OAV | The EBW proportion in waste is the dominate source of VOCs | [7] |
Monitoring of VOCs released during composting of food, yard and paper wastes | GC-MS | Waste origin plays a crucial role on the chemical composition of VOCs | [72] |
Monitoring of VOCs released during household composting of food wastes | GC-MS, physicochemical measurements, PCA | PCA applied to VOCs and physicochemical parameters is a sufficient tool for the monitoring of the composting process | [73] |
Biofiltration efficiency assessment | Ammonia electrochemical sensor | Waste origin plays a crucial role on the biofiltration efficiency | [74] |
Monitoring emissions of odorants released from waste biogas plants | Multi-gas detector (PID and H2S, NH3, CH3SH electrochemical sensors), calculation of OAV | Odorant concentrations and odor activity value can be useful tools for the control of technological processes | [75] |
Monitoring of biogas generated from landfills | Internet of Things system equipped with gas sensors | Biogas content emitted from landfills may present dangers and sanitary risks | [76] |
Sensor Type | Advantages | Disadvantages |
---|---|---|
Classical gas sensors | ||
Chemiresistive metal oxide sensors | Suitable to wide range of gases Good sensitivity (ppm and sub–ppm) Long lifetime Short response time Mature technology production Low cost, Small size, Easy to use | Operates in high temperatures Vulnerable to poisoning Humidity sensitive Baseline drift |
Chemiresistive conducting polymers sensing | Suitable to wide range of gases Operates at room temperatures Resistant to sensor poisoning Good sensitivity (ppm) Short response time Low cost, Small size, Easy to use | Temperature and humidity sensitive Limited sensor lifetime Poor selectivity, reversibility and stability Baseline drift |
Chemiresistive carbon nanotubes and graphene sensors | Ultra-high sensitivity (ppb) Usually operates at room temperature Fast response and recovery time | Temperature and humidity sensitive Difficult to fabricate, expensive Poor reproducibility |
Electrochemical | Power efficient and robust High selectivity Ambient temperature operation Suitable for toxic gas detection | Large size Not suitable to wide range of gases |
Piezoelectric | Very high sensitivity (ppb) Diverse sensing materials Fast response and recovery times | Temperature and humidity sensitive Poor signal–to–noise ratio Complex fabrication process |
Optical | High sensitivity, selectivity and stability Fast response and recovery times Insensitive to environment change | Difficulty in miniaturization High cost and high power consumption Low portability |
MS and GC based e-noses | ||
MS | Insensitive to environment change High sensitivity, stability, reproducibility Resistant to sensor poisoning and baseline drift Well known technology | Expensive Consume high amounts of power Difficulty in miniaturization Complicated construction |
GC | Insensitive to environment change Resistant to sensor poisoning and baseline drift High sensitivity, stability, reproducibility | Large and heavy Complicated construction Very expensive Require carrier gas Not foreseen for on site applications |
E-Nose | Technology | Data Processing | Applications | References Accessed on 8 February 2022 |
---|---|---|---|---|
AirSense Analytics-PEN | MOS | DFA, PCA, LDA, PLS and more | Environment, security and quality control (including: odor concentration) | www.airsense.com |
AirSense Analytics-Olfosense | MOS, PID, EC, OPC | PCA, PLSR | Environment (including: odor concentration with dispersion modeling) | www.airsense.com |
AirSense Analytics-GDA2 | MOS, EC, IMS, PID | non defined | Hazardous gases, chemical warfare detection | www.airsense.com |
Alpha M.O.S-Heracles Neo | Flash GC | PCA, DFA, PLS and more | Food control quality, new aroma development | www.alpha-mos.com |
Applied Sensor-Air Quality Modules | MOS | PCA, PCR, LDA, ANN and more | Indoor air quality monitoring, diverse industries (food, chemical, textile) | www.applied-sensor.com |
Aryballe-NeOse Pro | Optical biosensors | PCA | Diverse industries (automotive, food, beverage) | www.aryballe.com |
Electronic Sensor Technology-zNose | SAW with flash GC | non defined | Healthcare, medical research investigations, security, outdoor air quality and environmental odor monitoring, diverse industries (food, beverage, chemicals) | www.estcal.com |
KIT Karlsruher-SAGAS | SAW | ANN, PLS, LDA, Cluster, PCA | Indoor air quality, chemical industry | www.kit-technology.de |
Odotech-OdoWatch | MOS | ANN, Cluster | Environment (continuous monitoring of odors and other gaseous contaminants with dispersion modeling) | www.odotech.com |
RoboScientific Ltd.-Model 307 | CPs | non defined | Plants and animals disease detection (including COVID-19) | www.robo-scientific.com |
RubiX - WT1 | MOS with optionally: EC, PID, OPC, NDIR... | PCA, LDA, PLS | Outdoor and indoor air quality, environmental odor monitoring (including: odor concentration withdispersion modeling) | www.rubixsi.com |
Sensigent-Cyranose 320 | CPs/carbon black | PCA, k-NN, k-means, SVM and more | Medical research investigations, outdoor air quality and environmental odor monitoring, diverse industries (food, beverage, chemicals) | www.sensigent.com |
The eNose Company-Aeonose | MOS | non defined | Healthcare (cancer detection) | www.enose-company.com |
SACMI-EOS Ambiente | MOS | PCA, DFA, LDA, ANN, PLS, SVM and more | Environment (including: odor concentration with dispersion modeling) | www.sacmi.com |
Application | E-NoseTechnology | AdditionalMeasurements | Ref. |
---|---|---|---|
Qualitative detection of VOCs during composting processMonitoring of the compost stability | Home made (7 MOS) | GC - MS | [177] |
Compost maturity assessment Monitoring of the compost stability | PEN3 AirSense Analytics | NDIR, PID, GC-MS | [71] |
Bio-filtration efficiency of the composting gases | PEN3 AirSense Analytics | PID | [178] |
Correlation between odor concentration and chemical composition of VOCs emitted during composting process | Home made (6 MOS) | Olfactometry, GC-MS | [35] |
Qualitative and quantitative detection of VOCs during composting process | Home-made (6 QCM) | Validation with GC-MS | [179] |
Early detection of organic overload in the anaerobic reactor | Home-made (6 MOS) | NDIR, EC, sludge pH | [181,182] |
Investigation of the correlation between microbial activity, odor concentration and VOCs emission during anaerobic digestion of wastes | PEN2 AirSense Analytics | Olfactometry, GC-MS | [184] |
Application | E-NoseTechnology | Additional Measurements | Ref. |
---|---|---|---|
Monitoring of odor concentration inside a composting hall | Home-made (7 MOS) | GC-MS, dynamic olfactometry, field inspections, dispersion modeling | [185] |
Discrimination of odor sources in the vicinity of a composting plant | Home made (6 MOS) | Olfactometry, citizens involvement | [188,190] |
Monitoring of odor concentration and discrimination of odor sources in the close neighborhood of a composting facility | Network of 5 e-noses made of 6 MOS | Dynamic olfactometry, citizens involvement, dispersion modeling | [33] |
Discrimination of odor sources | Network of 5 e-noses made of MOS | Dynamic olfactometry | [189] |
Comparison of odor sources discrimination capability of two commercial e-noses | PEN3 and Cyranose 320 commercial e-noses | None | [165] |
Comparison of odor sources discrimination capability of two e-noses | Heracles Neo and home-made e-nose based on MOS, PID and EC sensors | Field olfactometry | [36,130] |
Odor concentration measurements in the vicinity of several odor sources (including landfills) | Home-made e-nose based on MOS | Field olfactometry | [193] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jońca, J.; Pawnuk, M.; Arsen, A.; Sówka, I. Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants—A Review. Sensors 2022, 22, 1510. https://doi.org/10.3390/s22041510
Jońca J, Pawnuk M, Arsen A, Sówka I. Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants—A Review. Sensors. 2022; 22(4):1510. https://doi.org/10.3390/s22041510
Chicago/Turabian StyleJońca, Justyna, Marcin Pawnuk, Adalbert Arsen, and Izabela Sówka. 2022. "Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants—A Review" Sensors 22, no. 4: 1510. https://doi.org/10.3390/s22041510
APA StyleJońca, J., Pawnuk, M., Arsen, A., & Sówka, I. (2022). Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants—A Review. Sensors, 22(4), 1510. https://doi.org/10.3390/s22041510