Higher Hamstrings Strength and Stability Are Related to Lower Kinematics Alteration during Running after Central and Peripheral Fatigue
Abstract
:1. Introduction
- We investigated the differences in running kinematics after two fatigue protocols to identify the responses associated with fatigue.
- We have described that central fatigue induce changes in running kinematics to a lesser efficiency running pattern.
- We described the relationship between isokinetic strength and dynamic stability variables as a predictor of prevention effects of the fatigue processes.
- We have described that higher hamstring isokinetic strength and dynamic stability are related to lower kinematic changes in the running pattern.
2. Materials and Methods
2.1. Participants
2.2. Experimental Setups
2.2.1. Isokinetic Strength Assessment
2.2.2. Dynamic Stability Assessment
2.2.3. Angular Kinematics Assessment
2.2.4. Fatigue Protocols
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Derrick, T.R.; Dereu, D.; Mclean, S.P. Impacts and kinematic adjustments during an exhaustive run. Med. Sci. Sports Exerc. 2002, 34, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Koblbauer, I.F.; van Schooten, K.S.; Verhagen, E.A.; van Dieën, J.H. Kinematic changes during running-induced fatigue and relations with core endurance in novice runners. J. Sci. Med. Sport 2014, 17, 419–424. [Google Scholar] [CrossRef]
- Kellis, E.; Zafeiridis, A.; Amiridis, I.G. Muscle coactivation before and after the impact phase of running following isokinetic fatigue. J. Athl. Train. 2011, 46, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Kellis, E.; Liassou, C. The effect of selective muscle fatigue on sagittal lower limb kinematics and muscle activity during level running. J. Orthop. Sports Phys. Ther. 2009, 39, 210–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derrick, T.R. The effects of knee contact angle on impact forces and accelerations. Med. Sci. Sports Exerc. 2004, 36, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Valiant, G.A. Transmission and attenuation of heelstrike accelerations. In Biomechanics of Distance Running; Cavanagh, P.R., Ed.; Human Kinetics: Champaign, IL, USA, 1990; pp. 225–247. [Google Scholar]
- Gerritsen, K.G.M.; van den Bogert, A.J.; Nigg, B.M. Direct dynamics simulation of the impact phase in heel-toe running. J. Biomech. 1995, 28, 661–668. [Google Scholar] [CrossRef]
- Gandevia, S.C.; Enoka, R.M.; McComas, A.J.; Stuart, D.G.; Thomas, C.K. Neurobiology of muscle fatigue: Advances and issues. In Fatigue: Neural and Muscular Mechanisms; Gandevia, S.C., Enoka, R.M., McComas, A.J., Douglas, G.S., Thomas, C.K., Pierce, P.A., Eds.; Springer: Boston, MA, USA, 1995; pp. 515–525. [Google Scholar]
- Espeit, L.; Brownstein, C.G.; Royer, N.; Besson, T.; Martin, V.; Millet, G.Y.; Lapole, T. Central fatigue aetiology in prolonged trail running races. Exp. Physiol. 2021, 106, 663–672. [Google Scholar] [CrossRef]
- Christina, K.A.; White, S.C.; Gilchrist, L.A. Effect of localized muscle fatigue on vertical ground reaction forces and ankle joint motion during running. Hum. Mov. Sci. 2001, 20, 257–276. [Google Scholar] [CrossRef]
- Giovanelli, N.; Taboga, P.; Rejc, E.; Simunic, B.; Antonutto, G.; Lazzer, S. Effects of an uphill marathon on running mechanics and lower-limb muscle fatigue. Int. J. Sports Physiol. Perform. 2016, 11, 522–529. [Google Scholar] [CrossRef]
- Martin, V.; Kerherve, H.; Messonnier, L.A.; Banfi, J.C.; Geyssant, A.; Bonnefoy, R.; Feasson, L.; Millet, G.Y. Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run. J. Appl. Physiol. 2010, 108, 1224–1233. [Google Scholar] [CrossRef]
- Temesi, J.; Rupp, T.; Martin, V.; Arnal, P.J.; Féasson, L.; Verges, S.; Millet, G.Y. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running. Med. Sci. Sports Exerc. 2014, 46, 1166–1175. [Google Scholar] [CrossRef] [PubMed]
- Radzak, K.N.; Putnam, A.M.; Tamura, K.; Hetzler, R.K.; Stickley, C.D. Asymmetry between lower limbs during rested and fatigued state running gait in healthy individuals. Gait Posture 2017, 51, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Clansey, A.C.; Hanlon, M.; Wallace, E.S.; Lake, M.J. Effects of fatigue on running mechanics associated with tibial stress fracture risk. Med. Sci. Sports Exerc. 2012, 44, 1917–1923. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Cuevas, A.G.; Priego-Quesada, J.I.; Aparicio, I.; Giménez, J.V.; Llana-Belloch, S.; Pérez-Soriano, P. Effect of 3 weeks use of compression garments on stride and impact shock during a fatiguing run. Int. J. Sports Med. 2015, 36, 826–831. [Google Scholar] [CrossRef]
- Hunter, I.; Smith, G.A. Preferred and optimal stride frequency, stiffness and economy: Changes with fatigue during a 1-h high-intensity run. Eur. J. Appl. Physiol. 2007, 100, 653–661. [Google Scholar] [CrossRef]
- Khassetarash, A.; Hassannejad, R.; Ettefagh, M.M.; Sari-Sarraf, V. Fatigue and soft tissue vibration during prolonged running. Hum. Mov. Sci. 2015, 44, 157–167. [Google Scholar] [CrossRef]
- Anbarian, M.; Esmaeili, H. Effects of running-induced fatigue on plantar pressure distribution in novice runners with different foot types. Gait Posture 2016, 48, 52–56. [Google Scholar] [CrossRef]
- Steib, S.; Hentschke, C.; Welsch, G.; Pfeifer, K.; Zech, A. Effects of fatiguing treadmill running on sensorimotor control in athletes with and without functional ankle instability. Clin. Biomech. 2013, 28, 790–795. [Google Scholar] [CrossRef]
- Tong, T.K.; Wu, S.; Nie, J.; Baker, J.S.; Lin, H. The occurrence of core muscle fatigue during high-intensity running exercise and its limitation to performance: The role of respiratory work. J. Sports Sci. Med. 2014, 13, 244–251. [Google Scholar]
- Ohya, T.; Yamanaka, R.; Hagiwara, M.; Oriishi, M.; Suzuki, Y. The 400- and 800-m track running induces inspiratory muscle fatigue in trained female middle-distance runners. J. Strength Cond. Res. 2016, 30, 1433–1437. [Google Scholar] [CrossRef]
- Millet, G.Y.; Divert, C.; Banizette, M.; Morin, J.-B. Changes in running pattern due to fatigue and cognitive load in orienteering. J. Sports Sci. 2010, 28, 153–160. [Google Scholar] [CrossRef]
- Vernillo, G.; Savoldelli, A.; Zignoli, A.; Skafidas, S.; Fornasiero, A.; La Torre, A.; Bortolan, L.; Pellegrini, B.; Schena, F. Energy cost and kinematics of level, uphill and downhill running: Fatigue-induced changes after a mountain ultramarathon. J. Sports Sci. 2015, 33, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Giandolini, M.; Vernillo, G.; Samozino, P.; Horvais, N.; Edwards, W.B.; Morin, J.-B.; Millet, G.Y. Fatigue associated with prolonged graded running. Eur. J. Appl. Physiol. 2016, 116, 1859–1873. [Google Scholar] [CrossRef] [PubMed]
- Vercruyssen, F.; Tartaruga, M.; Horvais, N.; Brisswalter, J. Effects of footwear and fatigue on running economy and biomechanics in trail runners. Med. Sci. Sports Exerc. 2016, 48, 1976–1984. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Cuevas, A.G.; Pérez-Soriano, P.; Llana-Belloch, S.; Macián-Romero, C.; Sánchez-Zuriaga, D. Effect of custom-made and prefabricated insoles on plantar loading parameters during running with and without fatigue. J. Sports Sci. 2014, 32, 1712–1721. [Google Scholar] [CrossRef]
- Wouda, F.J.; Giuberti, M.; Bellusci, G.; Maartens, E.; Reenalda, J.; van Beijnum, B.-J.F.; Veltink, P.H. Estimation of vertical ground reaction forces and sagittal knee kinematics during running using three inertial sensors. Front. Physiol. 2018, 9, 218. [Google Scholar] [CrossRef]
- Milner, C.E.; Hamill, J.; Davis, I. Are knee mechanics during early stance related to tibial stress fracture in runners? Clin. Biomech. 2007, 22, 697–703. [Google Scholar] [CrossRef]
- Hayes, P.R.; Bowen, S.J.; Davies, E.J. The relationships between local muscular endurance and kinematic changes during a run to exhaustion at vVO2max. J. Strength Cond. Res. 2004, 18, 898–903. [Google Scholar] [CrossRef]
- Wikstrom, E.A.; Powers, M.E.; Tillman, M.D. Dynamic stabilization time after isokinetic and functional fatigue. J. Athl. Train. 2004, 39, 247–253. [Google Scholar]
- Kernozek, T.W.; Torry, M.R.; Iwasaki, M. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am. J. Sports Med. 2008, 36, 554–565. [Google Scholar] [CrossRef]
- Madigan, M.L.; Pidcoe, P.E. Changes in landing biomechanics during a fatiguing landing activity. J. Electromyogr. Kinesiol. 2003, 13, 491–498. [Google Scholar] [CrossRef]
- Casáis Martínez, L. Review of physical activity strategies to prevent sports injuries. Apunt. Sports Med. 2008, 43, 30–40. [Google Scholar]
- Willwacher, S.; Regniet, L.; Mira Fischer, K.; Oberländer, K.D.; Brüggemanna, G.-P. The effect of shoes, surface conditions and sex on leg geometry at touchdown in habitually shod runners. Footwear Sci. 2014, 6, 129–138. [Google Scholar] [CrossRef]
- Sobhani, S.; Dekker, R.; Postema, K.; Dijkstra, P.U. Epidemiology of ankle and foot overuse injuries in sports: A systematic review. Scand. J. Med. Sci. Sports 2013, 23, 669–686. [Google Scholar] [CrossRef]
- García-Pérez, J.A.; Pérez-Soriano, P.; Llana Belloch, S.; Lucas-Cuevas, Á.G.; Sánchez-Zuriaga, D. Effects of treadmill running and fatigue on impact acceleration in distance running. Sports Biomech. 2014, 13, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.G.; van Cingel, R.E.H. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soleimanifar, M.; Salavati, M.; Akhbari, B.; Moghadam, M. The interaction between the location of lower extremity muscle fatigue and visual condition on unipedal postural stability. Eur. J. Appl. Physiol. 2012, 112, 3495–3502. [Google Scholar] [CrossRef]
- Wikstrom, E.A.; Tillman, M.D.; Chmielewski, T.L.; Cauraugh, J.H.; Naugle, K.E.; Borsa, P.A. Dynamic postural control but not mechanical stability differs among those with and without chronic ankle instability. Scand. J. Med. Sci. Sports 2010, 20, e137–e144. [Google Scholar] [CrossRef]
- Williams, V.J.; Nagai, T.; Sell, T.C.; Abt, J.P.; Rowe, R.S.; McGrail, M.A.; Lephart, S.M. Prediction of dynamic postural stability during single-leg jump landings by ankle and knee flexibility and strength. J. Sport Rehabil. 2016, 25, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Nigg, B.M.; De Boer, R.W.; Fisher, V. A kinematic comparison of overground and treadmill running. Med. Sci. Sports Exerc. 1995, 27, 98–105. [Google Scholar] [CrossRef]
- Novacheck, T.F. The biomechanics of running. Gait Posture 1998, 7, 77–95. [Google Scholar] [CrossRef]
- Milner, C.E.; Paquette, M.R. A kinematic method to detect foot contact during running for all foot strike patterns. J. Biomech. 2015, 48, 3502–3505. [Google Scholar] [CrossRef]
- Morin, J.B.; Dalleau, G.; Kyröläinen, H.; Jeannin, T.; Belli, A. A simple method for measuring stiffness during running. J. Appl. Biomech. 2005, 21, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cangelosi, V.E.; Taylor, P.E.; Rice, P.F. Basic Statistics: A Real World Approach, 3rd ed.; West Publishing Co.: St. Paul, MN, USA, 1983; ISBN 0314696377. [Google Scholar]
- Teng, H.L.; Powers, C.M. Influence of trunk posture on lower extremity energetics during running. Med. Sci. Sports Exerc. 2015, 47, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Rabita, G.; Couturier, A.; Dorel, S.; Hausswirth, C.; Le Meur, Y. Changes in spring-mass behavior and muscle activity during an exhaustive run at VO2max. J. Biomech. 2013, 46, 2011–2017. [Google Scholar] [CrossRef] [Green Version]
- Girard, O.; Millet, G.P.; Slawinski, J.; Racinais, S.; Micallef, J.P. Changes in running mechanics and spring-mass behaviour during a 5-km time trial. Int. J. Sports Med. 2013, 34, 832–840. [Google Scholar] [CrossRef]
- Nummela, A.; Rusko, H.; Mero, A. EMG activities and ground reaction forces during fatigued and nonfatigued sprinting. Med. Sci. Sports Exerc. 1994, 26, 605–609. [Google Scholar] [CrossRef]
- Paavolainen, L.; Nummela, A.; Rusko, H.; Häkkinen, K. Neuromuscular characteristics and fatigue during 10 km running. Int. J. Sports Med. 1999, 20, 516–521. [Google Scholar] [CrossRef]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics: A New View of Statistics. Available online: http://www.sportsci.org/resource/stats/effectmag.html (accessed on 18 January 2022).
Mean | SD | |
---|---|---|
VSI * | 0.325 | 0.056 |
MLSI * | 0.114 | 0.010 |
APSI * | 0.031 | 0.005 |
DPSI * | 0.346 | 0.055 |
QTORQ (%) | 245.28 | 39.60 |
HTORQ (%) | 124.77 | 31.26 |
QANG-TORQ (°) | 56.71 | 5.08 |
HANG-TORQ (°) | 40.65 | 11.28 |
H/Q ratio (%) | 50.6 | 8.2 |
Peripheral Fatigue | Central Fatigue | |||||||
---|---|---|---|---|---|---|---|---|
Pre-Fatigue | Post-Fatigue | 95% CI | Effect Size | Pre-Fatigue | Post-Fatigue | 95% CI | Effect Size | |
Mean ± SD | Mean ± SD | (Cohen’s D) | Mean ± SD | Mean ± SD | (Cohen´s D) | |||
Stride Freq. (Hz) | 177.18 ± 2.48 | 176.65 ± 2.47 | 176.39 ± 2.34 | 174.89 ± 2.14 | ||||
Stride Length (m) | 2.63 ± 0.15 | 2.63 ± 0.15 | 2.65 ± 0.14 | 2.68 ± 0.13 | ||||
Stride Time (s) | 0.679 ± 0.009 | 0.681 ± 0.009 | 0.682 ± 0.009 | 0.688 ± 0.009 | ||||
Stance Time (s) § | 0.222 ± 0.005 | 0.223 ± 0.005 | 0.226 ± 0.004 | 0.232 ± 0.005 * | −0.009/−0.003 | 1.325 | ||
Swing Time (s) | 0.457 ± 0.009 | 0.459 ± 0.008 | 0.457 ± 0.008 | 0.456 ± 0.008 | ||||
Stance Time (%) | 32.71 ± 0.72 | 32.67 ± 0.60 | 33.13 ± 0.54 | 33.76 ± 0.65 | ||||
Swing Time (%) | 67.29 ± 0.72 | 67.33 ± 0.60 | 66.87 ± 0.54 | 66.24 ± 0.65 | ||||
Absorption Time (s) | 0.097 ± 0.002 | 0.098 ± 0.003 | 0.099 ± 0.002 | 0.099 ± 0.003 | ||||
Propulsion Time (s) | 0.125 ± 0.004 | 0.124 ± 0.004 | 0.127 ± 0.003 | 0.133 ± 0.004 * | −0.001/−0.011 | 0.588 | ||
kLeg (kN·m−1) | 10.96 ± 0.68 | 10.85 ± 0.62 | 10.39 ± 0.49 | 9.83 ± 0.55 | ||||
kVert (kN·m−1) | 27.89 ± 1.21 | 27.58 ± 1.19 | 26.82 ± 0.94 | 25.83 ± 1.03 | ||||
Thigh_ IC (°) | 24.36 ± 0.8 | 24.14 ± 0.75 | 23.77 ± 0.85 | 24.59 ± 0.98 | ||||
Knee IC (°) | 12.65 ± 1.22 | 11.71 ± 1.24 | 12.34 ± 1.40 | 12.56 ± 1.40 | ||||
Shank IC (°) | 3.27 ± 0.75 | 3.93 ± 0.66 | 3.85 ± 0.57 | 4.45 ± 0.74 * | −1.204/−0.054 | 0.908 | ||
Ankle IC (°) § | 2.54 ± 1.96 | 3.15 ± 1.90 * | −0.698/1.918 | 0.315 | 0.48 ± 1.67 | 0.84 ± 1.51 | ||
Rearfoot IC (°) | −0.71 ± 1.75 | −1.52 ± 1.82 | −0.50 ± 1.76 | −1.92 ± 1.41 | ||||
Thigh MKF (°) § | 16.43 ± 1.17 | 16.08 ± 1.12 | 15.61 ± 1.11 | 16.95 ± 1.12 | ||||
Knee MKF (°) | 32.29 ± 1.74 | 32.14 ± 1.72 | 32.12 ± 1.73 | 33.79 ± 1.68 ** | −2.302/−1.033 | 0.979 | ||
Shank MKF (°) § | −24.30 ± 0.58 | −24.56 ± 0.50 | −24.09 ± 0.61 | −24.42 ± 0.64 | ||||
Ankle MKF (°) § | −11.74 ± 1.84 | −11.33 ± 1.92 | −13.66 ± 1.21 | −14.11 ± 1.07 | ||||
Rearfoot MKF (°) § | −9.92 ± 2.90 | −10.46 ± 4.01 | −11.76 ± 1.78 | −13.84 ± 1.44 | ||||
Thigh TO (°) | −17.50 ± 0.92 | −16.86 ± 0.86 | −18.30 ± 0.83 | −18.48 ± 0.89 | ||||
Knee TO (°) | 14.33 ± 1.10 | 15.48 ± 1.12 ** | −2.415/−0.602 | 1.036 | 14.32 ± 1.20 | 15.12 ± 1.27 | ||
Shank TO (°) § | −40.27 ± 0.70 | −40.84 ± 0.65 * | 0.105/1.035 | −0.844 | −40.19 ± 0.62 | −41.18 ± 0.70 ** | 0.536/1.444 | −1.497 |
Ankle TO (°) | 19.06 ± 1.53 | 19.56 ± 1.48 | 17.91 ± 1.53 | 19.20 ± 1.67 | ||||
Rearfoot TO (°) § | 8.20 ± 3.26 | 6.14 ± 5.31 | 6.48 ± 2.93 | 4.68 ± 3.35 | ||||
Thigh MO (°) | 18.76 ± 0.92 | 19.06 ± 0.57 | 18.00 ± 0.89 | 18.87 ± 0.81 | ||||
Knee MO (°) | 92.95 ± 2.80 | 92.26 ± 2.28 | 92.29 ± 2.58 | 93.27 ± 2.41 | ||||
Shank MO (°) § | −51.05 ± 12.27 | −57.68 ± 12.57 | −56.31 ± 13.36 | −55.61 ± 13.42 | ||||
Ankle MO (°) § | 12.75 ± 2.10 | 13.37 ± 2.17 | 12.35 ± 2.41 | 13.00 ± 1.87 | ||||
Rearfoot MO (°) | 98.2 ± 18.47 | 103.34 ± 14.92 | 91.60 ± 20.69 | 107.19 ± 17.37 |
Peripheral Post-Fatigue | Central Post-Fatigue | IC 95% | Effect Size | ∆ Peripheral Fatigue | ∆ Central Fatigue | IC 95% | Effect Size | |
---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | (Cohen’s D) | Mean ± SD | Mean ± SD | (Cohen’s D) | |||
Stride Freq. (Hz) | 176.65 ± 2.47 | 174.89 ± 2.14 | −0.526 ± 0.959 | −1.503 ± 1.407 | ||||
Stride Length (m) | 2.63 ± 0.145 | 2.68 ± 0.133 | 0.006 ± 0.054 | −0.121 ± 0.603 | ||||
Stride Time (s) | 0.681 ± 0.009 | 0.688 ± 0.009 | 0.002 ± 0.004 | 0.006 ± 0.005 | ||||
Stance Time (s) § | 0.223 ± 0.005 | 0.232 ± 0.005 * | −0.012/−0.006 | 1.800 | 0.000 ± 0.000 | 0.010 ± 0.000 | ||
Swing Time (s) | 0.459 ± 0.008 | 0.456 ± 0.008 | 0.000 ± 0.000 | 0.000 ± 0.000 | ||||
Stance Time (%) | 32.67 ± 0.6 | 33.76 ± 0.65 | −0.041 ± 0.28 | 0.636 ± 0.283 | ||||
Swing Time (%) | 67.33 ± 0.6 | 66.24 ± 0.65 * | 0.140/2.054 | −1.743 | 0.041 ± 0.28 | −0.636 ± 0.283 | ||
Absorption Time (s) | 0.098 ± 0.003 | 0.099 ± 0.003 | 0.001 ± 0.001 | 0.000 ± 0.002 | ||||
Propulsion Time (s) | 0.124 ± 0.004 | 0.133 ± 0.004 | −0.001 ± 0.001 | 0.007 ± 0.002 ** | −0.012/−0.003 | 5.06 | ||
kLeg (kN·m−1) | 10.85 ± 0.62 | 9.83 ± 0.55 * | 0.812/1.971 | −0.438 | −0.14 ± 0.21 | −0.56 ± 1.04 | ||
kVert (kN·m−1) | 27.58 ± 1.19 | 25.83 ± 1.03 * | 0.291/3.192 | −0.391 | −0.38 ± 0.39 | −0.98 ± 1.91 | ||
Thigh IC (°) | 24.14 ± 0.75 | 24.59 ± 0.98 | −0.22 ± 0.30 | 0.82 ± 0.32 * | 0.424/−1.944 | 3.353 | ||
Knee IC (°) | 11.71 ± 1.24 | 12.56 ± 1.40 | −0.94 ± 0.51 | 0.22 ± 0.46 * | −2.302/−0.015 | 2.389 | ||
Shank IC (°) | 3.93 ± 0.66 | 4.45 ± 0.74 | 0.66 ± 0.44 | 0.60 ± 0.36 | ||||
Ankle IC (°) § | 3.15 ± 1.90 | 0.84 ± 1.51 * | 1.586/3.474 | 1.346 | 0.62 ± 0.21 | 0.36 ± 0.69 | ||
Rearfoot IC (°) | −1.52 ± 1.82 | −1.92 ± 1.41 | −0.81 ± 1.10 | −1.42 ± 1.44 | ||||
Thigh MKF (°) § | 16.08 ± 1.12 | 16.95 ± 1.12 | −0.35 ± 0.37 | 1.34 ± 0.33 * | −2.851/−0.520 | 4.821 | ||
Knee MKF (°) | 32.14 ± 1.72 | 33.79 ± 1.68 | −0.15 ± 0.46 | 1.67 ± 0.30 ** | −3.105/−0.529 | 4.687 | ||
Shank MKF (°) § | −24.56 ± 0.50 | −24.42 ± 0.64 | −0.26 ± 0.22 | −0.33 ± 0.17 | ||||
Ankle MKF (°) § | −11.33 ± 1.92 | −14.11 ± 1.07 * | −1.702/3.858 | −1.789 | 0.41 ± 0.29 | −0.45 ± 0.56 | ||
Rearfoot MKF (°) § | −10.46 ± 4.01 | −13.84 ± 1.44 | −0.54 ± 1.67 | −2.08 ± 1.46 | ||||
Thigh TO (°) | −16.86 ± 0.86 | −18.48 ± 0.89 | 0.64 ± 0.29 | −0.18 ± 0.41 | ||||
Knee TO (°) | 15.48 ± 1.12 | 15.12 ± 1.27 | 1.15 ± 0.38 | 0.80 ± 0.44 | ||||
Shank TO (°) § | −40.84 ± 0.65 | −41.18 ± 0.70 | −0.57 ± 0.27 | −0.98 ± 0.19 | ||||
Ankle TO (°) | 19.56 ± 1.48 | 19.20 ± 1.67 | 0.49 ± 0.69 | 1.29 ± 0.81 | ||||
Rearfoot TO (°) § | 6.14 ± 5.31 | 4.68 ± 3.35 | −2.06 ± 3.37 | −1.80 ± 1.53 | ||||
Thigh MO (°) | 19.06 ± 0.57 | 18.87 ± 0.81 | 0.30 ± 0.59 | 0.87 ± 0.81 | ||||
Knee MO (°) | 92.26 ± 2.28 | 93.27 ± 2.41 | −0.69 ± 1.28 | 0.97 ± 1.18 | ||||
Shank MO (°) § | −57.68 ± 12.57 | −55.61 ± 13.42 | −6.63 ± 7.65 | 0.70 ± 3.50 | ||||
Ankle MO (°) § | 13.37 ± 2.17 | 13.00 ± 1.87 | 0.62 ± 0.57 | 0.65 ± 1.29 | ||||
Rearfoot MO (°) | 103.34 ± 14.92 | 107.19 ± 17.37 | 5.14 ± 12.18 | 15.59 ± 18.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Encarnación-Martínez, A.; García-Gallart, A.; Sanchis-Sanchis, R.; Jimenez-Perez, I.; Priego-Quesada, J.I.; Pérez-Soriano, P. Higher Hamstrings Strength and Stability Are Related to Lower Kinematics Alteration during Running after Central and Peripheral Fatigue. Sensors 2022, 22, 1990. https://doi.org/10.3390/s22051990
Encarnación-Martínez A, García-Gallart A, Sanchis-Sanchis R, Jimenez-Perez I, Priego-Quesada JI, Pérez-Soriano P. Higher Hamstrings Strength and Stability Are Related to Lower Kinematics Alteration during Running after Central and Peripheral Fatigue. Sensors. 2022; 22(5):1990. https://doi.org/10.3390/s22051990
Chicago/Turabian StyleEncarnación-Martínez, Alberto, Antonio García-Gallart, Roberto Sanchis-Sanchis, Irene Jimenez-Perez, Jose I. Priego-Quesada, and Pedro Pérez-Soriano. 2022. "Higher Hamstrings Strength and Stability Are Related to Lower Kinematics Alteration during Running after Central and Peripheral Fatigue" Sensors 22, no. 5: 1990. https://doi.org/10.3390/s22051990
APA StyleEncarnación-Martínez, A., García-Gallart, A., Sanchis-Sanchis, R., Jimenez-Perez, I., Priego-Quesada, J. I., & Pérez-Soriano, P. (2022). Higher Hamstrings Strength and Stability Are Related to Lower Kinematics Alteration during Running after Central and Peripheral Fatigue. Sensors, 22(5), 1990. https://doi.org/10.3390/s22051990