Inertial Motion Capture-Based Wearable Systems for Estimation of Joint Kinetics: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion/Exclusion Criteria
2.3. Data Extraction
3. Results
3.1. Characteristics of Studies
3.1.1. Activity
3.1.2. Joint under Study
3.1.3. Kinetic Variable
3.1.4. Estimation Method and Measurement System
3.1.5. Subjects
3.2. Methodologies
3.2.1. Inverse Dynamics-Based Method (IDM)
Sensor Attachment Location
Dimension
Anatomical Calibration
Bottom-Up Inverse Dynamics
Top-Down Inverse Dynamics
Combined Inverse Dynamics and Others
3.2.2. Machine Learning-Based Method (MLM)
Machine Learning Techniques
Input Variables
3.3. Study Result
Author (Year) [Ref.] | Activity | Joint | Kinetic Variable | Type of Method | Measurement | Subject (Number and Sex and Age) |
---|---|---|---|---|---|---|
Zijlstra and Bisseling (2004) [73] | Stance on one leg | Hip | Moment (AP) | IDM | IMU | Healthy adult (5 M, 23 (23–24)) |
Schepers et al. (2007) [32] | Walking | Ankle | Power, Moment (3D) | IDM | IMU, MFP | Healthy adult (1, ND) |
Zheng et al. (2008) [33] | Walking | Hip, Knee, Ankle | Power, Moment (ML) | IDM | IMU, MFP | Healthy adult (8 M, 2 F, 28.1 ± 1.99) |
Faber et al. (2010) [61] | Manual lifting tasks | L5/S1, Hip, Knee | Moment (3D) | IDM | IMU, FP | Healthy adult (11 M, 27.4 ± 4.3) |
Krüger et al. (2011) [76] | Snowboard | Hip, Knee, Ankle | Moment (3D) | IDM | IMU, MFP | Snowboarder (1 M, 21) |
Rouhani et al. (2011) [34] | Walking | Ankle | Power, Moment (3D), Force (3D) | IDM | IMU, PS | 1. Ankle OA patient (8 M, 4 F, 58 ± 13) 2. Healthy adult (3 M, 7 F, 61 ± 13) |
Van den Noort et al. (2012) [35] | Walking | Knee | Moment (3D) | IDM | IMU, MFP | Knee OA patient (4 M, 16 F, 61.0 ± 8.8) |
Kim and Nussbaum (2013) [62] | Manual material handling tasks | L5/S1, Shoulder, Hip, Knee | Moment (3D) | IDM | IMU, FP | Healthy adult (11 M, 3 F, 22.9 ± 4.9 (19–38)) |
Van den Noort et al. (2013) [36] | Walking | Knee | Moment (AP) | IDM | IMU, MFP | Knee OA patient (3 M, 11 F, 61.0 ± 9.2) |
Kim and Kim (2014) [55] | Squat, Sit-to-stand, Stair ascent, Walking | Hip, Knee, Ankle | Moment (ML) | IDM | IMU, MFP | Healthy adult (1 M, ND) |
Liu et al. (2014) [37] | Walking | Hip, Knee, Ankle | Moment (3D) | IDM | IMU, MFP | Healthy adult (4 M, ND) |
Rouhani et al. (2014) [38] | Walking | Ankle | Power, Moment (3D), Force (3D) | IDM | IMU, PS | 1. Ankle OA patient (8 M, 4 F, 58 ± 13) 2. Healthy adult (3 M, 7 F, 61 ± 13) |
Yang and Mao (2014) [39] | Walking | Hip, Knee, Ankle | Force (AP, SI) | IDM | IMU | Healthy adult (3 M, 24.5 ± 0.5) |
Khurelbaatar et al. (2015) [40] | Walking | Cervical, Thoracic, Lumbar, Shoulder, Elbow, Wrist, Hip, Knee, Ankle | Moment (Mag), Force (Mag) | IDM | IMU, PS | Healthy adult (5 M, 27 ± 1) |
Logar and Munih (2015) [77] | Ski jumping | Hip, Knee, Ankle | Moment (ML) | IDM | IMU | 1. Ski jumpers (model validation) (4, 19 ± 4) 2. Ski jumpers (outdoor validation) (6, 18.9 ± 3) |
Yang and Mao (2015) [41] | Walking | Hip, Knee, Ankle | Force (3D) | IDM | IMU | Healthy adult (2 M, 24.5 ± 0.5) |
Faber et al. (2016) [75] | Trunk bending | L5/S1 joint | Moment (3D) | IDM | IMU | Healthy adult (9 M, 36 ± 11) |
Kodama and Watanabe (2016) [68] | Squat, Sit-to-stand | Hip, Knee, Ankle | Moment (ML) | IDM | IMU | Healthy adult (6 M, 21–23) |
Lee et al. (2017) [78] | Ski | Hip, Knee, Ankle | Moment (3D), Force (3D) | IDM | IMU, PS | Ski coach (7 M, 35.3 ± 4.9) |
Wu et al. (2017) [72] | Stair climbing | Hip, Knee, Ankle | Moment (ML) | IDM | IMU, PS | Healthy adult (13 M, 25) |
Koopman et al. (2018) [63] | Manual lifting tasks | L5/S1 joint | Moment (3D) | IDM | IMU | Healthy adult (9 M, 8 F, 33.5 ± 12.0) |
Kotani et al. (2018) [42] | Walking | Hip | Moment (ML) | IDM | IMU | Healthy adult (2 M, 2 ± 0) |
Liu et al. (2018) [69] | Sit-to-stand | Hip, Knee, Ankle | Moment (ML) | IDM | IMU, FP | 1. Healthy adult (5 M, 28.1 ± 6.3) 2. Limb dyskinesia patients (5 M, 29.5 ± 7.5) |
Purevsuren et al. (2018) [79] | Short-track skating | Knee | Moment (3D), Force (3D) | IDM | IMU, PS | Speed skater (5 M, 3 F, 16.6 ± 2.6) |
Dorschky et al. (2019) [56] | Walking, Running | Hip, Knee, Ankle | Moment (ML) | IDM | IMU | Healthy adult (10 M, 27.1 ± 2.6) |
Karatsidis et al. (2019) [43] | Walking | Hip, Knee, Ankle | Moment (3D), Force (3D) | IDM | IMU | Healthy adult (11 M, 31.0 ± 7.2) |
Konrath et al. (2019) [70] | Stair ascent, descent and Sit-to-stand | Knee | Moment (AP), Force (SI) | IDM | IMU | Healthy adult (6 M, 2 F, 59 ± 8) |
Conforti et al. (2020) [64] | Manual lifting tasks | L5/S1 joint | Force (3D) | IDM | IMU, PS | Healthy adult (1 M, 36) |
Faber et al. (2020) [65] | Manual material handling tasks | L5/S1 joint | Moment (3D) | IDM | IMU, MFP | Healthy adult (8 M, 8 F, 32 ± 10) |
Fukutoku et al. (2020) [44] | Walking | Knee, Ankle | Moment (ML) | IDM | IMU | Healthy adult (1 F, 24) |
Larsen et al. (2020) [66] | Manual material handling tasks | L4-L5 joint | Force (3D) | IDM | IMU | Healthy adult (9 M, 4 F, 25.7 ± 3.4) |
Noamani et al. (2020) [74] | Standing | L5/S1, Hip, Ankle | Moment (ML) | IDM | IMU | Healthy adult (10 M, 24.8 ± 2.8) |
Hwang et al. (2021) [71] | Sit-to-stand with different weight-bearings | Hip, Knee, Ankle | Moment (ML) | IDM | IMU, FP | Healthy adult (8 M, 8 F, 27.6 ± 2.9) |
Jiang et al. (2019) [45] | Walking | Ankle | Power | MLM | IMU | Healthy adult (9 M, ND) |
Lim et al. (2019) [46] | Walking | Hip, Knee, Ankle | Moment (ML) | MLM | IMU | Healthy adult (7 M, 25.0 ± 2.9) |
Miyashita et al. (2019) [47] | Walking | Ankle | Power | MLM | IMU | Healthy adult (13 M, 24.3 ± 5.5) |
Stetter et al. (2019) [57] | 16 types of movement tasks (e.g., walking, running) | Knee | Force (3D) | MLM | IMU | Sport student (13 M, 26.1 ± 2.9) |
De Brabandere et al. (2020) [58] | 9 types of movement tasks (e.g., walking, standing/squat on one leg) | Hip, Knee | Impulse | MLM | IMU | Hip OA patient (20, 55–75) |
Dorschky et al. (2020) [59] | Walking, Running | Hip, Knee, Ankle | Moment (ML) | MLM | IMU | Healthy adult (10 M, 27.1 ± 2.6) |
Lee and Park (2020) [48] | Walking | Hip, Knee, Ankle | Moment (3D) | MLM | IMU | Healthy adult (8 M, 12 F, 24.7 ± 3.2) |
Matijevich et al. (2020) [49] | Running | Ankle (Tibia) | Compressive force | MLM | IMU, PS | Recreational runner (5 M, 5 F, 24 ± 2.5) |
Mundt et al. (2020) [50] | Walking | Hip, Knee, Ankle | Moment (3D) | MLM | IMU | Healthy adult (ND, ND) |
Mundt et al. (2020) [51] | Walking | Hip, Knee, Ankle | Moment (3D) | MLM | IMU | Healthy adult (18 M, 12 F, 28.1 ± 6.0) |
Stetter et al. (2020) [60] | Walking, Running | Knee | Moment (3D) | MLM | IMU | Sport student (13 M, 26.1 ± 2.9) |
Barua et al. (2021) [52] | Walking | Ankle | Power | MLM | IMU | Healthy adult (9 M, 27.1 ± 2.6) |
Iwama et al. (2021) [53] | Walking | Knee | Moment (AP) | MLM | IMU | Knee OA patient (3 M, 19 F, 68.5 ± 6.4) |
Matijevich et al. (2021) [67] | Manual material handling tasks | Lumbar | Moment (ML) | MLM | IMU, PS | Healthy adult (7 M, 3 F, 25 ± 3) |
Mundt et al. (2021) [54] | Walking | Hip, Knee, Ankle | Moment (3D) | MLM | IMU | Healthy adult (68 M, 48 F, 37.6 ± 17.1) |
Author (Year) [Ref.] | IMU Attachment Location | No. | GRF, Sensor or Method | Method for Joint Kinetics | Dim. | Assumption or Feature |
---|---|---|---|---|---|---|
Zijlstra and Bisseling (2004) [73] | Thorax, Pelvis | 2 | NA, NA | ID (Hof, 1992) | 3D | Compare rigid/segmented trunk models |
Schepers et al. (2007) [32] | Forefoot, Heel | 2 | Measured, MFP | Bottom-up ID | 3D | NA |
Zheng et al. (2008) [33] | Thigh (L), Calf (L), Foot (L) | 3 | Measured, MFP | Bottom-up ID (Hof, 1992) | 2D | NA |
Faber et al. (2010) [61] | Pelvis, Thigh (L), Calf (L), Foot (L) | 4 | Measured, FP | Bottom-up ID | 3D | Simulated sensor from marker cluster |
Krüger et al. (2011) [76] | Head, Sternum, Pelvis, Shoulder (R/L), Upper arms (R/L), Forearm (R/L), Hand (R/L), Thigh (R/L), Shank (R/L), Foot (R/L) | 17 | Measured, MFP | Bottom-up ID (in OpenSim) | 3D | Multi-segment model in OpenSim (Delp, 2011) |
Rouhani et al. (2011) [34] | Shank (L), Foot (L) | 2 | Measured, PS | Bottom-up ID | 3D | 1. Assuming CoP as foot’s CoR 2. Rigid foot model 3. Ignore inertial term |
Van den Noort et al. (2012) [35] | Thigh (L), Shank (L), Heel (L), Forefoot (L) | 4 | Measured, MFP | Bottom-up ID (Hof, 1992) | 3D | 1. Simulated sensor from marker cluster 2. Product of GRF and moment arm only |
Kim and Nussbaum (2013) [62] | Head, Sternum, Pelvis, Shoulder (R/L), Upper arms (R/L), Forearm (R/L), Hand (R/L), Thigh (R/L), Shank (R/L), Foot (R/L) | 17 | Lower limb: Measured, FP Shoulder: Measured (HF), Load cell | Lower limb: Bottom-up ID Shoulder: Top-down ID | 3D | NA |
Van den Noort et al. (2013) [36] | Shank (R/L), Heel (R/L), Forefoot (R/L) | 6 | Measured, MFP | Bottom-up ID (Hof, 1992) | 3D | Product of GRF and moment arm only |
Kim and Kim (2014) [55] | ASIS (L), Lateral femoral epicondyle (L), Lateral malleolus (L), 5th metatarsal head (L) | 4 | Measured, MFP | Bottom-up ID | 2D | Segments move in the sagittal plane |
Liu et al. (2014) [37] | Thigh (R/L), Shank (R/L), Heel (R/L), Forefeet (R/L) | 8 | Measured, MFP | Bottom-up ID | 3D | NA |
Rouhani et al. (2014) [38] | Shank (L), Hindfoot (L), Forefoot (L), Toe (L) | 4 | Measured, PS | Bottom-up ID | 3D | 1. Assuming CoP as foot’s CoR 2. 3-segment foot model |
Yang and Mao (2014) [39] | GYRO: Thigh (R/L), Shank (R/L), Foot (R/L) ACC: Foot (R/L) | 6 | NA, NA | Lower limb: Top-down ID Hip force: 6-order polynomial function | 2D | Segments move in the sagittal plane |
Khurelbaatar et al. (2015) [40] | Head, Sternum, Pelvis, Shoulder (R/L), Upper arms (R/L), Forearm (R/L), Hand (R/L), Thigh (R/L), Shank (R/L), Foot (R/L) | 17 | Measured, PS | Bottom-up ID | 3D | Restore 3D GRF from pressure data |
Logar and Munih (2015) [77] | Both sides of sacrum, Upper arm (R/L), Thigh (R/L), Shank (R/L), Ski (R/L) | 10 | NA, NA | A1: Bottom-up ID (reference) A2: Top-down ID A3: Top-down-up ID | 2D | 1. Bilaterally symmetric 2. No external force on top segment |
Yang and Mao (2015) [41] | GYRO: Trunk, Thigh (R/L), Shank (R/L), Foot (R/L) ACC: Foot (R/L) | 7 | NA, NA | Lower limb: Top-down ID Hip force: Exponential transfer function | 3D | NA |
Faber et al. (2016) [75] | Head, Sternum, Pelvis, Shoulder (R/L), Upper arms (R/L), Forearm (R/L), Hand (R/L), Thigh (R/L), Shank (R/L), Foot (R/L) | 17 | NA, NA | Top-down ID | 3D | No external force on top segment |
Kodama and Watanabe (2016) [68] | Upper/middle/lower trunk, Frontal/lateral side of shank/thigh (L) | 7 | NA, NA | Top-down ID | 2D | 1. Foot fixed to the ground 2. No external force on top segment 3. Compare different three trunk models |
Lee et al. (2017) [78] | Head, Sternum, Pelvis, Shoulder (R/L), Upper arms (R/L), Forearm (R/L), Hand (R/L), Thigh (R/L), Shank (R/L), Foot (R/L) | 17 | Measured, PS | Bottom-up ID | 3D | Restore 3D GRF from pressure data |
Wu et al. (2017) [72] | Pelvis, Thigh (R/L), Shank (R/L), Forefoot (R/L) | 7 | Measured, PS | Bottom-up ID | 2D | 1. Segments move in the sagittal plane 2. Vertical GRF only |
Koopman et al. (2018) [63] | Head, Sternum, Pelvis, Shoulder (R/L), Upper arms (R/L), Forearm (R/L), Hand (R/L), Thigh (R/L), Shank (R/L), Foot (R/L) | 17 | Lower limb: NA, NA Hand: Measured, FP | Lower limb: Top-down ID Hand: Bottom-up ID | 3D | 1. External forces only on hands 2. Compare different sensor sets (17/8/6/4 sensors) |
Kotani et al. (2018) [42] | Head, upper/lower body trunk, hip (L), thigh (L), lower leg (L) | 7 | NA, NA | Force balance equation | 2D | Consider only one-leg support |
Liu et al. (2018) [69] | Trunk, Thigh (R), Shank (R) | 3 | Measured (CRF), FP | Top-down ID | 2D | Segments move in the sagittal plane |
Purevsuren et al. (2018) [79] | Head, Sternum, Pelvis, Shoulder (R/L), Upper arms (R/L), Forearm (R/L), Hand (R/L), Thigh (R/L), Shank (R/L), Foot (R/L) | 17 | Measured, PS | Bottom-up ID | 3D | Restore 3D GRF from pressure data |
Dorschky et al. (2019) [56] | Lower back, Lateral thigh (R/L), Lateral shank (R/L), Upper midfoot (R/L) | 7 | Predicted, Contact model | Bottom-up ID, Optimal control method (Van den Bogert, 2011) | 2D | 1. Construct planar MSK model 2. Compare virtual/actual sensor |
Karatsidis et al. (2019) [43] | Head, Sternum, Pelvis, Shoulder (R/L), Upper arms (R/L), Forearm (R/L), Hand (R/L), Thigh (R/L), Shank (R/L), Foot (R/L) | 17 | Predicted, Method by Skals et al. (2017) | Bottom-up ID, Static optimization | 3D | Construct MSK model (in AnyBody) |
Konrath et al. (2019) [70] | Head, Sternum, Pelvis, Shoulder (R/L), Upper arms (R/L), Forearm (R/L), Hand (R/L), Thigh (R/L), Shank (R/L), Foot (R/L) | 17 | Predicted, Method by Skals et al. (2017) | Bottom-up ID | 3D | Construct MSK model (in AnyBody) |
Conforti et al. (2020) [64] | Trunk, Arm (R/L), Forearm (R/L), Pelvis, Thigh (R/L), Shank (R/L), Foot (R/L) | 12 | Measured, PS | Bottom-up ID | 3D | 1. Vertical GRF only 2. Ignore inertial forces |
Faber et al. (2020) [65] | Head, Sternum, Pelvis, Shoulder (R/L), Upper arms (R/L), Forearm (R/L), Hand (R/L), Thigh (R/L), Shank (R/L), Foot (R/L) | 17 | Measured, MFP | A1: Bottom-up ID A2: Top-down ID | 3D | External forces only on hands |
Fukutoku et al. (2020) [44] | Upper body, Thigh (R/L), Lower leg (R/L), Foot (R/L) | 7 | Predicted, Equation of motion | Bottom-up ID | 2D | 1. Segments move in the sagittal plane 2. Vertical GRF only 3. Separate GRF during double support phase using zero moment point |
Larsen et al. (2020) [66] | Head, Sternum, Pelvis, Shoulder (R/L), Upper arms (R/L), Forearm (R/L), Hand (R/L), Thigh (R/L), Shank (R/L), Foot (R/L) | 17 | Predicted, Method by Skals et al. (2017) | Bottom-up ID | 3D | Construct MSK model (in AnyBody) |
Noamani et al. (2020) [74] | Sternum, Sacrum (R), Tibia (R), Foot (R) | 4 | NA, NA | Top-down ID | 3D | 1. No external force on top segment 2. Bilaterally symmetric 3. Foot fixed to the ground |
Hwang et al. (2021) [71] | Shank (R/L) | 2 | Measured, FP | Bottom-up ID | 2D | 1. Foot fixed to the ground 2. Segments move in the sagittal plane 3. Negligible angular/linear acceleration |
Author (Year) [Ref.] | IMU Attachment Location | No. | Technique | Input Data | Input Dim. |
---|---|---|---|---|---|
Jiang et al. (2019) [45] | Shank (L), Foot (L) | 2 | Random forests regression | 2∗ACC (3D), 2*GYRO (3D) | 12 |
Lim et al. (2019) [46] | Sacrum | 1 | Feedforward neural network | Time, CoM Pos/Vel/Acc (AP, V) | 7 |
Miyashita et al. (2019) [47] | Shank (R) | 1 | Stepwise multiple regression | ACC (V), BW | 2 |
Stetter et al. (2019) [57] | Thigh (R), Shank (R) | 2 | Feedforward neural network | 2∗ACC (3D), 2*GYRO (3D) | 12 |
De Brabandere et al. (2020) [58] | Hip (L) | 1 | Regularized linear regression models | ACC (3D), GYRO (3D) | 6 |
Dorschky et al. (2020) [59] | Lower back, Thigh (R), Shank (R), Foot (R) | 4 | Convolutional neural network | 4∗ACC (AP and V) 4∗GYRO (ML) | 12 |
Lee and Park (2020) [48] | Sacrum | 1 | Feedforward neural network | time, CoM Pos/Vel/Acc (3D) | 10 |
Matijevich et al. (2020) [49] | Shank, Foot | 2 | Regularized linear regression models | Different combinations of sensor data (Max/Min of shank/foot angles at midstance (IMU), features from GRF/CoP (PS), speed, slope) | |
Mundt et al. (2020) [50] | ND | ND | A1. Feedforward neural network A2. Long short-term memory | ND | ND |
Mundt et al. (2020) [51] | Pelvis, Thigh (R/L), Shank (R/L) | 5 | Feedforward neural network | 5∗ACC (3D), 5*GYRO (3D) | 30 |
Stetter et al. (2020) [60] | Thigh (R), Shank (R) | 2 | Feedforward neural network | 2∗ACC (3D), 2*GYRO (3D) | 12 |
Barua et al. (2021) [52] | Shank (L), Foot (L) | 2 | A1. Long short-term memory (LSTM) A2. Convolutional neural network (CNN) A3. Fusion of CNN and LSTM A4. Random forest regression [45] | 2∗ACC Norm/Avg 2∗GYRO Norm/Avg | 8 |
Iwama et al. (2021) [53] | Sternum, Pelvis, Thigh (R/L), Shank (R/L) | 6 | Linear regression | Peak-to-peak acceleration of each IMU | 1 |
Matijevich et al. (2021) [67] | Trunk, Pelvis, Thigh (R/L), Shank (R/L), Foot (R/L) | 8 | Gradient boosted decision trees | Different combinations of sensor data (Kinematic data from 8 IMUs, GRF/CoP from PS) | |
Mundt et al. (2021) [54] | Pelvis, Thigh (R/L), Shank (R/L) | 5 | A1. Multilayer perceptron A2. Long short-term memory A3. Convolutional neural network | 5∗ACC (3D), 5∗GYRO (3D) | 30 |
Author (Year) [Ref.] | Outcomes [Activities] | Measure | Unit | Accuracy |
---|---|---|---|---|
Zijlstra and Bisseling (2004) [73] | Hip moment (AP) [stance on one leg] | RMSE | Nm/kg | A1 (Rigid trunk model): 0.0244–0.0730 A2 (Segmented trunk model): 0.0247–0.0449 |
Schepers et al. (2007) [32] | Ankle power, moment (3D) [walking] | RMSE (% of peak) | Moment: Nm/N (%) Power: W/N (%) | Moment: 0.004 (2.3) Power: 0.02 (14) |
Zheng et al. (2008) [33] | Hip, Knee, Ankle power, moment (ML) [walking] | RMSE (% of peak) | Moment: Nm (%) Power: W (%) | Moment: Hip = 11.2 (6.1), Knee = 7.2 (6.0), Ankle = 2.0 (5.4) Power: Hip = 5.7 (6.4), Knee = 5.7 (4.1), Ankle = 4.2 (8.4) |
Faber et al. (2010) [61] | L5/S1, Hip, Knee moment (3D) [manual lifting tasks] | MAE | Nm | (L5/S1) ML = 11.5–31.0 (Hip) AP = 2.4–17.5, ML = 5.6–15.5, SI = 3.3–4.7 (Knee) AP = 1.2–3.0, ML = 1.2–2.1, SI = 0.2–4.3 |
Rouhani et al. (2011) [34] | Ankle power, moment (3D), force (3D) [walking] | NRMSE (CC) | % ( ) | Force: AP < 9.1 (>0.97), ML < 11.5 (>0.94), SI < 3.8 (>0.91) Moment: AP < 194.0 (>0.06), ML < 13.0 (>0.99), SI < 22.7 (>0.92) Power: < 20.4 (>0.85) |
Van den Noort et al. (2012) [35] | Knee moment (3D) [walking] | RMSE (% of range) | %BW∗BH (%) | AP = 0.58 (16), ML = 1.07 (26), SI = 0.10 (17) |
Kim and Nussbaum (2013) [62] | L5/S1, Shoulder, Hip, Knee moment (3D) [manual material handling tasks] | MAE | Nm | (L5/S1) AP = 5.8–34.2, ML = 7.2–20.0, SI = 1.2–10.3 (Shoulder) AP = 1.0–1.5, ML = 0.6–2.2, SI = 5.8–9.9 (Hip) AP = 10.6–14.4, ML = 5.8–9.9, SI = 2.9–6.1 (Knee) ML = 5.6–6.6 |
Van den Noort et al. (2013) [36] | Knee moment (AP) [walking] | RMSE (% of range) | %BW∗BH (%) | 0.79 (23) |
Kim and Kim (2014) [55] | Hip, Knee, Ankle moment (ML) [squat, sit-to-stand, walking, etc.] | RMSE | Nm | (Hip) 8.5, (Knee) 6.5, (Ankle) 6.2 |
Liu et al. (2014) [37] | Hip, Knee, Ankle moment (3D) [walking] | NRMSE (CC) | % ( ) | (Hip) AP = 15.3 (0.81), ML = 21.0 (0.91), SI = 19.3 (0.89) (Knee) AP = 13.4 (0.98), ML = 4.1 (0.99), SI = 9.5 (0.96) (Ankle) AP = 6.7 (0.99), ML = 3.5 (0.97), SI = 7.1 (0.95) |
Khurelbaatar et al. (2015) [40] | Whole body joint moment (Mag), force (Mag) [walking] | NRMSE (CC) | % ( ) | Force: 5.5–6.2 (0.71–0.99) Moment: 8.0–16.9 (0.70–0.98) |
Logar and Munih (2015) [77] | Hip, Knee, Ankle moment (ML) [ski jumping] | RMSE | Nm | (Hip) 10.9, (Knee) 9.1, (Ankle) 7.5 |
Faber et al. (2016) [75] | L5/S1 moment (3D) [trunk bending] | RMSE (% of peak) | Nm (%) | <10 (5) (all results: graph only) |
Kodama and Watanabe (2016) [68] | Hip, Knee, Ankle moment (ML) [squat, sit-to-stand] | RMSE (CC) | Nm/kg ( ) | Avg: 0.06 (Hip, Knee = 0.98, Ankle = 0.80) (all results: graph only) |
Koopman et al. (2018) [63] | L5/S1 moment (3D) [manual lifting tasks] | RMSE | Nm | Set A (17 sensors, i.e., full body): 16.6 Set B (8 sensors): 20.5 Set C (6 sensors): 22.0 Set D (4 sensors): 30.6 |
Dorschky et al. (2019) [56] | Hip, Knee, Ankle moment (ML) [walking, running] | RMSE (CC) | %BW∗BH | (Hip) 1.5–3.2 (0.76–0.85) (Knee) 1.5–3.4 (0.81–0.94) (Ankle) 1.6–3.2 (0.95–0.96) |
Karatsidis et al. (2019) [43] | Hip, Knee, Ankle moment (3D), force (3D) [walking] | RMSE (CC) | Force: %BW ( ) Moment: %BW∗BH ( ) | Force: (Hip) AP = 17.6 (0.71), ML = 27.0 (0.73), SI = 102.8 (0.78) (Knee) AP = 30.6 (0.82), ML = 12.0 (0.91), SI = 63.1 (0.90) (Ankle) AP = 22.2 (0.84), ML = 24.3 (0.93), SI = 88.5 (0.93) Moment: (Hip) AP = 1.4 (0.83), ML = 2.2 (0.92), SI = 0.5 (0.50) (Knee) AP = 1.1 (0.81), ML = 1.9 (0.58), SI = 0.3 (0.73) (Ankle) AP = 0.6 (0.76), ML = 1.6 (0.93), SI = 0.5 (0.67) |
Konrath et al. (2019) [70] | Knee moment (AP), Force (SI) [stair ascent/descent, sit-to-stand] | RMSE (CC) | Force: %BW ( ) Moment: %BW∗BH ( ) | Force: 40–90 (0.85–0.92) Moment: 0.6–1.4 (0.74–0.98) |
Conforti et al. (2020) [64] | L5/S1 force peak (3D) [manual lifting tasks] | MAE | N | AP = 11.7–12.8, ML = 4.5–5.8, SI = 11.7–20.9 |
Faber et al. (2020) [65] | L5/S1 moment (3D) [manual material handling tasks] | RMSE (% of peak) | Nm (%) | A1 (bottom-up) < 40 (20%) A2 (top-down) < 20 (10%) (all results: graph only) |
Larsen et al. (2020) [66] | L4-L5 joint force (3D) [manual material handling tasks] | RMSE | %BW | AP = 7.98–22.73 ML = 1.71–4.06 SI = 44.87–74.69 |
Noamani et al. (2020) [74] | L5/S1, Hip, Ankle moment (ML) [standing] | RMSE (CC) | Nm/kg ( ) | <0.016 (>0.93) (all results: graph only) |
Hwang et al. (2021) [71] | Hip, Knee, Ankle moment (ML) [sit-to-stand] | RMSE (CC) | Nm/kg ( ) | (Hip) 0.044–0.105 (0.987–0.995) (Knee) 0.041–0.091 (0.990–0.999) (Ankle) 0.024–0.028 (0.988–0.996) |
Jiang et al. (2019) [45] | Ankle power [walking] | NRMSE (CC) | W/kg ( ) | Intra-subject test: 0.03–0.10 (0.94–0.98) Inter-subject test: 0.06–0.21 (0.84–0.93) |
Lim et al. (2019) [46] | Hip, Knee, Ankle moment (ML) [walking] | NRMSE | % | Hip = 10.65–11.67 Knee = 9.33–10.58 Ankle = 9.24–9.64 |
Stetter et al. (2019) [57] | Knee force (3D) [16 types of movement tasks] | CC | AP = 0.64–0.90 ML = 0.25–0.60 SI = 0.60–0.94 | |
De Brabandere et al. (2020) [58] | Hip, knee impulse [9 types of movement tasks] | MAPE | % | (Hip) R = 36, L = 29 (Knee) R = 48.2, L = 32.1 |
Dorschky et al. (2020) [59] | Hip, Knee, Ankle moment (ML) [walking, running] | RMSE (CC) | %BW∗BH ( ) | (Hip) < 1.78 (>0.927) (Knee) < 1.28 (>0.958) (Ankle) < 1.39 (>0.971) |
Lee and Park (2020) [48] | Hip, Knee, Ankle moment (3D) [walking] | NRMSE | % | (Hip) AP = 15.38–22.50, ML = 9.08–16.08, SI = 13.72–23.66 (Knee) AP = 15.95–20.96, ML = 17.47–33.64, SI = 16.16–27.62 (Ankle) ML = 11.54–18.20 |
Matijevich et al. (2020) [49] | Tibial compressive force [running] | NRMSE | % | A1 (IDM): 5.2 A2 (MLM using PS and foot/shank IMU): 2.6 A3 (MLM using PS): 4.7 A4 (MLM using foot/shank IMU): 8.3 |
Mundt et al. (2020) [50] | Hip, Knee, Ankle moment (3D) [walking] | NRMSE (CC) | % ( ) | (Hip) A1 (FFNN): AP = 7.34 (0.99), ML = 10.29 (0.98), SI = 6.50 (0.99) A2 (LSTM): AP = 8.34 (0.98), ML = 9.83 (0.99), SI = 8.64 (0.99) (Knee) A1: AP = 10.58 (0.98), ML = 9.46 (0.98), SI = 17.12 (0.88) A2: AP = 14.52 (0.96), ML = 11.85 (0.96), SI = 20.05 (0.86) (Ankle) A1: AP = 22.60 (0.91), ML = 7.36 (0.99), SI = 17.59 (0.93) A2: AP = 24.19 (0.90), ML = 7.32 (0.99), SI = 19.68 (0.94) |
Mundt et al. (2020) [51] | Hip, Knee, Ankle moment (3D) [walking] | NRMSE (CC) | % ( ) | <13.0 (Avg = 0.95) (all results: graph only) |
Stetter et al. (2020) [60] | Knee moment (3D) [6 types of movement tasks] | RMSE (CC) | Nm/kg ( ) | AP = 0.18–0.92 (−0.05–0.71) ML = 0.26–1.13 (0.65–0.85) |
Barua et al. (2021) [52] | Ankle power [walking] | MSE (CC) | ND ( ) | A1 (LSTM) = 0.059 (92.69) A2 (CNN) = 0.127 (92.27) A3 (CNN-LSTM) = 0.129 (92.07) A4 (Random Forest) = 0.184 (81.75) |
Iwama et al. (2021) [53] | Knee moment (AP) [walking] | RMSE (p-value) | Nm/(kgm) ( ) | 0.079–0.084 (< 0.001) |
Matijevich et al. (2021) [67] | Lumbar moment (ML) [manual material handling tasks] | RMSE | Nm | Set A (Trunk IMU) = 31 Set B (Trunk IMU + PS) = 20 Set C (Distributed sensors) = 17 |
Mundt et al. (2021) [54] | Hip, Knee, Ankle moment (3D) [walking] | NRMSE | % | (all results: graph only) |
4. Discussion
4.1. Characteristics of Studies
4.2. Inverse Dynamics-Based Method and Its Limitations
4.3. Machine Learning-Based Method and Its Limitations
4.4. Study Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
IMC | Inertial motion capture |
OMC | Optical motion capture |
IMU | Inertial measurement unit |
FP | Force plate |
MFP | Mobile force plate |
PS | Pressure sensor |
GRF | Ground reaction force |
GRM | Ground reaction moment |
CoP | Center of pressure |
CoM | Center of mass |
HAT | Head-arms-trunk |
IDM | Inverse dynamics-based method |
MLM | Machine learning-based method |
FFNN | Feedforward neural network |
CNN | Convolutional neural network |
LSTM | Long short-term memory |
AP | Anterior–posterior |
ML | Medial–lateral |
SI | Superior–inferior |
References
- Hunt, M.A.; Birmingham, T.B.; Giffin, J.R.; Jenkyn, T.R. Associations among knee adduction moment, frontal plane ground reaction force, and lever arm during walking in patients with knee osteoarthritis. J. Biomech. 2006, 39, 2213–2220. [Google Scholar] [CrossRef] [PubMed]
- Richards, R.E.; Andersen, M.S.; Harlaar, J.; Van Den Noort, J.C. Relationship between knee joint contact forces and external knee joint moments in patients with medial knee osteoarthritis: Effects of gait modifications. Osteoarthr. Cartil. 2018, 26, 1203–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foroughi, N.; Smith, R.; Vanwanseele, B. The association of external knee adduction moment with biomechanical variables in osteoarthritis: A systematic review. Knee 2009, 16, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Hinman, R.S.; Bowles, K.A.; Metcalf, B.B.; Wrigley, T.V.; Bennell, K.L. Lateral wedge insoles for medial knee osteoarthritis: Eects on lower limb frontal plane biomechanics. Clin. Biomech. 2012, 27, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Kao, P.C.; Lewis, C.L.; Ferris, D.P. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J. Biomech. 2010, 43, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Deng, J.; Zha, F.; Qiu, S.; Wang, X.; Chen, F. Towards online estimation of human joint muscular torque with a lower limb exoskeleton robot. Appl. Sci. 2018, 8, 1610. [Google Scholar] [CrossRef] [Green Version]
- Kingma, I.; de Looze, M.P.; Toussaint, H.M.; Klijnsma, H.G.; Bruijnen, T.B. Validation of a full body 3-D dynamic linked segment model. Hum. Mov. Sci. 1996, 15, 833–860. [Google Scholar] [CrossRef]
- Doriot, N.; Chèze, L. A three-dimensional kinematic and dynamic study of the lower limb during the stance phase of gait using an homogeneous matrix approach. IEEE Trans. Biomed. Eng. 2004, 51, 21–27. [Google Scholar] [CrossRef]
- Hof, A.L. An explicit expression for the moment in multibody systems. J. Biomech. 1992, 25, 1209–1211. [Google Scholar] [CrossRef]
- Dumas, R.; Chèze, L. 3D inverse dynamics in non-orthonormal segment coordinate system. Med. Biol. Eng. Comput. 2007, 45, 315–322. [Google Scholar] [CrossRef]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.; Cristofolini, L.; Witte, H. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; van der Helm, F.C.; Veeger, H.E.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Cappozzo, A.; Catani, F.; Della Croce, U.; Leardini, A. Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef]
- De Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Waterloo, ON, Canada, 1990. [Google Scholar]
- Lee, J.K.; Park, E.J. Quasi real-time gait event detection using shank-attached gyroscopes. Med. Biol. Eng. Comput. 2011, 49, 707–712. [Google Scholar] [CrossRef]
- El-Gohary, M.; Pearson, S.; McNames, J.; Mancini, M.; Horak, F.; Mellone, S.; Chiari, L. Continuous monitoring of turning in patients with movement disability. Sensors 2014, 14, 356–369. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; Robinovitch, S.N.; Park, E.J. Inertial sensing-based pre-impact detection of falls involving near-fall scenarios. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 23, 258–266. [Google Scholar] [CrossRef]
- Soro, A.; Brunner, G.; Tanner, S.; Wattenhofer, R. Recognition and repetition counting for complex physical exercises with deep learning. Sensors 2019, 19, 714. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.; Eberle, H.; Hayashi, Y.; Madgwick, S.O.; McGregor, A.; Jing, X.; Vaidyanathan, R. Formulation of a new gradient descent MARG orientation algorithm: Case study on robot teleoperation. Mech. Syst. Signal Process. 2019, 130, 183–200. [Google Scholar] [CrossRef]
- Lee, J.K. A parallel attitude-heading Kalman filter without state-augmentation of model-based disturbance components. IEEE Trans. Instrum. Meas. 2019, 68, 2668–2670. [Google Scholar] [CrossRef]
- Weygers, I.; Kok, M.; De Vroey, H.; Verbeerst, T.; Versteyhe, M.; Hallez, H.; Claeys, K. Drift-free inertial sensor-based joint kinematics for long-term arbitrary movements. IEEE Sens. J. 2020, 20, 7969–7979. [Google Scholar] [CrossRef] [Green Version]
- Weber, D.; Gühmann, C.; Seel, T. RIANN—A robust neural network outperforms attitude estimation filters. AI 2021, 2, 444–463. [Google Scholar] [CrossRef]
- Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of motion tracking methods based on inertial sensors: A focus on upper limb human motion. Sensors 2017, 17, 1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weygers, I.; Kok, M.; Konings, M.; Hallez, H.; De Vroey, H.; Claeys, K. Inertial sensor-based lower limb joint kinematics: A methodological systematic review. Sensors 2020, 20, 673. [Google Scholar] [CrossRef] [Green Version]
- Carnevale, A.; Longo, U.G.; Schena, E.; Massaroni, C.; Presti, D.L.; Berton, A.; Candela, V.; Denaro, V. Wearable systems for shoulder kinematics assessment: A systematic review. BMC Musculoskelet. Disord. 2019, 20, 1–24. [Google Scholar] [CrossRef]
- Simpson, L.; Maharaj, M.M.; Mobbs, R.J. The role of wearables in spinal posture analysis: A systematic review. BMC Musculoskelet. Disord. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Ancillao, A.; Tedesco, S.; Barton, J.; O’Flynn, B. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: A systematic review. Sensors 2018, 18, 2564. [Google Scholar] [CrossRef] [Green Version]
- Adesida, Y.; Papi, E.; McGregor, A.H. Exploring the role of wearable technology in sport kinematics and kinetics: A systematic review. Sensors 2019, 19, 1597. [Google Scholar]
- Gurchiek, R.D.; Cheney, N.; McGinnis, R.S. Estimating biomechanical time-series with wearable sensors: A systematic review of machine learning techniques. Sensors 2019, 19, 5227. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzla, J.; Altman, D.G.; Prisma Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Schepers, H.M.; Koopman, H.F.; Veltink, P.H. Ambulatory assessment of ankle and foot dynamics. IEEE Trans. Biomed. Eng. 2007, 54, 895–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, R.; Liu, T.; Inoue, Y.; Shibata, K.; Liu, K. Kinetics analysis of ankle, knee and hip joints using a wearable sensor system. J. Biomech. Sci. Eng. 2008, 3, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Rouhani, H.; Favre, J.; Crevoisier, X.; Aminian, K. Ambulatory measurement of ankle kinetics for clinical applications. J. Biomech. 2011, 44, 2712–2718. [Google Scholar] [CrossRef] [PubMed]
- Van den Noort, J.C.; Van der Esch, M.; Steultjens, M.P.; Dekker, J.; Schepers, H.M.; Veltink, P.H.; Harlaar, J. The knee adduction moment measured with an instrumented force shoe in patients with knee osteoarthritis. J. Biomech. 2012, 45, 281–288. [Google Scholar] [CrossRef]
- Van den Noort, J.J.; van der Esch, M.; Steultjens, M.P.; Dekker, J.; Schepers, M.H.; Veltink, P.H.; Harlaar, J. Ambulatory measurement of the knee adduction moment in patients with osteoarthritis of the knee. J. Biomech. 2013, 46, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Inoue, Y.; Shibata, K.; Shiojima, K.; Han, M.M. Triaxial joint moment estimation using a wearable three-dimensional gait analysis system. Measurement 2014, 47, 125–129. [Google Scholar] [CrossRef]
- Rouhani, H.; Favre, J.; Crevoisier, X.; Aminian, K. A wearable system for multi-segment foot kinetics measurement. J. Biomech. 2014, 47, 1704–1711. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.C.Y.; Mao, M.H. Analytical model for estimating intersegmental forces exerted on human lower limbs during walking motion. Measurement 2014, 56, 30–36. [Google Scholar] [CrossRef]
- Khurelbaatar, T.; Kim, K.S.; Lee, S.K.; Kim, Y.H. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors. Gait Posture 2015, 42, 65–69. [Google Scholar] [CrossRef]
- Yang, E.C.Y.; Mao, M.H. 3D analysis system for estimating intersegmental forces and moments exerted on human lower limbs during walking motion. Measurement 2015, 73, 171–179. [Google Scholar] [CrossRef]
- Kotani, H.; Shibata, K.; Sonobe, M.; Inoue, Y.; Satoh, H. Estimation of hip joint moment by an inertial measurement unit. In Proceedings of the International Conference on Human Systems Engineering and Design (IHSED), Reims, France, 25–27 October 2018; pp. 946–951. [Google Scholar]
- Karatsidis, A.; Jung, M.; Schepers, H.M.; Bellusci, G.; de Zee, M.; Veltink, P.H.; Andersen, M.S. Musculoskeletal model-based inverse dynamic analysis under ambulatory conditions using inertial motion capture. Med. Eng. Phys. 2019, 65, 68–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukutoku, K.; Nozaki, T.; Murakami, T. Measurement of joint moments using wearable sensors. IEEJ J. Ind. Appl. 2020, 9, 125–131. [Google Scholar] [CrossRef]
- Jiang, X.; Gholami, M.; Khoshnam, M.; Eng, J.J.; Menon, C. Estimation of ankle joint power during walking using two inertial sensors. Sensors 2019, 19, 2796. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Kim, B.; Park, S. Prediction of lower limb kinetics and kinematics during walking by a single IMU on the lower back using machine learning. Sensors 2019, 20, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyashita, T.; Kudo, S.; Maekawa, Y. Estimation of the ankle power during the terminal stance of gait using an inertial sensor. J. Phys. Ther. Sci. 2019, 31, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Park, S. Estimation of three-dimensional lower limb kinetics data during walking using machine learning from a single IMU attached to the sacrum. Sensors 2020, 20, 6277. [Google Scholar] [CrossRef] [PubMed]
- Matijevich, E.S.; Scott, L.R.; Volgyesi, P.; Derry, K.H.; Zelik, K.E. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running. Hum. Mov. Sci. 2020, 74, 102690. [Google Scholar] [CrossRef]
- Mundt, M.; Thomsen, W.; Witter, T.; Koeppe, A.; David, S.; Bamer, F.; Potthast, W.; Markert, B. Prediction of lower limb joint angles and moments during gait using artificial neural networks. Med. Biol. Eng. Comput. 2020, 58, 211–225. [Google Scholar] [CrossRef]
- Mundt, M.; Koeppe, A.; David, S.; Witter, T.; Bamer, F.; Potthast, W.; Markert, B. Estimation of gait mechanics based on simulated and measured IMU data using an artificial neural network. Front. Bioeng. Biotechnol. 2020, 8, 41. [Google Scholar] [CrossRef]
- Barua, A.; Zakia, U.; Menon, C.; Jiang, X. Deep learning techniques in estimating ankle joint power using wearable IMUs. IEEE Access 2021, 9, 83041–83054. [Google Scholar] [CrossRef]
- Iwama, Y.; Harato, K.; Kobayashi, S.; Niki, Y.; Ogihara, N.; Matsumoto, M.; Nakamura, M.; Nagura, T. Estimation of the external knee adduction moment during gait using an inertial measurement unit in patients with knee osteoarthritis. Sensors 2021, 21, 1418. [Google Scholar] [CrossRef] [PubMed]
- Mundt, M.; Johnson, W.R.; Potthast, W.; Markert, B.; Mian, A.; Alderson, J. A comparison of three neural network approaches for estimating joint angles and moments from inertial measurement units. Sensors 2021, 21, 4535. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.C.; Kim, K.S.; Kim, S. Wearable sensor system including optical 3-axis GRF sensor for joint torque estimation in real-time gait analysis. In Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besançon, France, 8–11 July 2014; pp. 112–117. [Google Scholar]
- Dorschky, E.; Nitschke, M.; Seifer, A.K.; van den Bogert, A.J.; Eskofier, B.M. Estimation of gait kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal models. J. Biomech. 2019, 95, 109278. [Google Scholar] [CrossRef] [PubMed]
- Stetter, B.J.; Ringhof, S.; Krafft, F.C.; Sell, S.; Stein, T. Estimation of knee joint forces in sport movements using wearable sensors and machine learning. Sensors 2019, 19, 3690. [Google Scholar] [CrossRef] [Green Version]
- De Brabandere, A.; Emmerzaal, J.; Timmermans, A.; Jonkers, I.; Vanwanseele, B.; Davis, J. A machine learning approach to estimate hip and knee joint loading using a mobile phone-embedded IMU. Front. Bioeng. Biotechnol. 2020, 8, 320. [Google Scholar] [CrossRef] [Green Version]
- Dorschky, E.; Nitschke, M.; Martindale, C.F.; van den Bogert, A.J.; Koelewijn, A.D.; Eskofier, B.M. CNN-based estimation of sagittal plane walking and running biomechanics from measured and simulated inertial sensor data. Front. Bioeng. Biotechnol. 2020, 8, 604. [Google Scholar] [CrossRef]
- Stetter, B.J.; Krafft, F.C.; Ringhof, S.; Stein, T.; Sell, S. A machine learning and wearable sensor based approach to estimate external knee flexion and adduction moments during various locomotion tasks. Front. Bioeng. Biotechnol. 2020, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Faber, G.S.; Kingma, I.; van Dieën, J.H. Bottom-up estimation of joint moments during manual lifting using orientation sensors instead of position sensors. J. Biomech. 2010, 43, 1432–1436. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M.A. Performance evaluation of a wearable inertial motion capture system for capturing physical exposures during manual material handling tasks. Ergonomics 2013, 56, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Koopman, A.S.; Kingma, I.; Faber, G.S.; Bornmann, J.; van Dieën, J.H. Estimating the L5S1 flexion/extension moment in symmetrical lifting using a simplified ambulatory measurement system. J. Biomech. 2018, 70, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Conforti, I.; Mileti, I.; Panariello, D.; Caporaso, T.; Grazioso, S.; Del Prete, Z.; Lanzotti, A.; Di Gironimo, G.; Palermo, E. Validation of a novel wearable solution for measuring L5/S1 load during manual material handling tasks. In Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Rome, Italy, 3–5 June 2020; pp. 501–506. [Google Scholar]
- Faber, G.S.; Kingma, I.; Chang, C.C.; Dennerlein, J.T.; van Dieën, J.H. Validation of a wearable system for 3D ambulatory L5/S1 moment assessment during manual lifting using instrumented shoes and an inertial sensor suit. J. Biomech. 2020, 102, 109671. [Google Scholar] [CrossRef] [PubMed]
- Larsen, F.G.; Svenningsen, F.P.; Andersen, M.S.; De Zee, M.; Skals, S. Estimation of spinal loading during manual materials handling using inertial motion capture. Ann. Biomed. Eng. 2020, 48, 805–821. [Google Scholar] [CrossRef] [PubMed]
- Matijevich, E.S.; Volgyesi, P.; Zelik, K.E. A promising wearable solution for the practical and accurate monitoring of low back loading in manual material handling. Sensors 2021, 21, 340. [Google Scholar] [CrossRef] [PubMed]
- Kodama, J.; Watanabe, T. Examination of inertial sensor-based estimation methods of lower limb joint moments and ground reaction force: Results for squat and sit-to-stand movements in the sagittal plane. Sensors 2016, 16, 1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Yan, J.; Liu, Y.; Ye, M. Noninvasive Estimation of Joint Moments with Inertial Sensor System for Analysis of STS Rehabilitation Training. J. Healthc. Eng. 2018, 2018, 6570617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konrath, J.M.; Karatsidis, A.; Schepers, H.M.; Bellusci, G.; de Zee, M.; Andersen, M.S. Estimation of the knee adduction moment and joint contact force during daily living activities using inertial motion capture. Sensors 2019, 19, 1681. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Choi, S.; Lee, Y.S.; Kim, J. A novel simplified system to estimate lower-limb joint moments during sit-to-stand. Sensors 2021, 21, 521. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Zhang, X.; Chen, B.; Shao, Z.; Lu, L. Development of a wearable multi-sensor system for lower limb joint torque evaluation during stairs climbing. In Proceedings of the 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR), Okinawa, Japan, 14–18 July 2017; pp. 285–290. [Google Scholar]
- Zijlstra, W.; Bisseling, R. Estimation of hip abduction moment based on body fixed sensors. Clin. Biomech. 2004, 19, 819–827. [Google Scholar] [CrossRef]
- Noamani, A.; Nazarahari, M.; Lewicke, J.; Vette, A.H.; Rouhani, H. Validity of using wearable inertial sensors for assessing the dynamics of standing balance. Med. Eng. Phys. 2020, 77, 53–59. [Google Scholar] [CrossRef]
- Faber, G.S.; Chang, C.C.; Kingma, I.; Dennerlein, J.T.; van Dieën, J.H. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system. J. Biomech. 2016, 49, 904–912. [Google Scholar] [CrossRef] [Green Version]
- Krüger, A.; McAlpine, P.; Borrani, F.; Edelmann-Nusser, J. Determination of three-dimensional joint loading within the lower extremities in snowboarding. J. Eng. Med. 2011, 226, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Logar, G.; Munih, M. Estimation of joint forces and moments for the in-run and take-off in ski jumping based on measurements with wearable inertial sensors. Sensors 2015, 15, 11258–11276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Kim, K.; Kim, Y.H.; Lee, S. Motion analysis in lower extremity joints during ski carving turns using wearable inertial sensors and plantar pressure sensors. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 695–698. [Google Scholar]
- Purevsuren, T.; Khuyagbaatar, B.; Kim, K.; Kim, Y.H. Investigation of knee joint forces and moments during short-track speed skating using wearable motion analysis system. Int. J. Precis. Eng. Manuf. 2018, 19, 1055–1060. [Google Scholar]
- Schepers, M.; Giuberti, M.; Bellusci, G. Xsens MVN: Consistent Tracking of Human Motion Using Inertial Sensing. Xsens Technol. 2018, 1, 1–8. [Google Scholar]
- Rouhani, H.; Favre, J.; Crevoisier, X.; Aminian, K. Ambulatory assessment of 3D ground reaction force using plantar pressure distribution. Gait Posture 2010, 32, 311–316. [Google Scholar] [CrossRef]
- Skals, S.; Jung, M.K.; Damsgaard, M.; Andersen, M.S. Prediction of ground reaction forces and moments during sports-related movements. Multibody Syst. Dyn. 2017, 39, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Todorov, E. Implicit nonlinear complementarity: A new approach to contact dynamics. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–8 May 2010; pp. 2322–2329. [Google Scholar]
- Grapentin, A.; Lehmann, D.; Zhupa, A.; Seel, T. Sparse magnetometer-free real-time inertial hand motion tracking. In Proceedings of the 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Karlsruhe, Germany, 14–16 September 2020; pp. 94–100. [Google Scholar]
- Eckho, K.; Kok, M.; Lucia, S.; Seel, T. Sparse magnetometer-free inertial motion tracking—A condition for observability in double hinge joint systems. arXiv 2020, arXiv:2002.00902. [Google Scholar]
- Pacher, L.; Chatellier, C.; Vauzelle, R.; Fradet, L. Sensor-to-segment calibration methodologies for lower-body kinematic analysis with inertial sensors: A systematic review. Sensors 2020, 20, 3322. [Google Scholar] [CrossRef]
- Weygers, I.; Kok, M.; Seel, T.; Shah, D.; Taylan, O.; Scheys, L.; Hallez, H.; Claeys, K. In-vitro validation of inertial-sensor-to-bone alignment. J. Biomech. 2021, 128, 110781. [Google Scholar] [CrossRef]
- Vitali, R.V.; Perkins, N.C. Determining anatomical frames via inertial motion capture: A survey of methods. J. Biomech. 2020, 106, 109832. [Google Scholar] [CrossRef]
- Frick, E.; Rahmatalla, S. Joint center estimation using single-frame optimization: Part 1: Numerical simulation. Sensors 2018, 18, 1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-de-Villa, S.; Jiménez-Martín, A.; García-Domínguez, J.J. Novel IMU-based adaptive estimator of the center of rotation of joints for movement analysis. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Camomilla, V.; Cereatti, A.; Cutti, A.G.; Fantozzi, S.; Stagni, R.; Vannozzi, G. Methodological factors affecting joint moments estimation in clinical gait analysis: A systematic review. Biomed. Eng. Online 2017, 16, 1–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holder, J.; Trinler, U.; Meurer, A.; Stief, F. A systematic review of the associations between inverse dynamics and musculoskeletal modeling to investigate joint loading in a clinical environment. Front. Bioeng. Biotechnol. 2020, 8, 1382. [Google Scholar] [CrossRef] [PubMed]
Categories | Search Terms |
---|---|
Joint | (joint * OR limb OR ankle OR knee OR hip OR lumbar OR L5S1 OR L5/S1 OR shoulder OR elbow OR wrist OR shoulder) |
AND | |
Kinetics | (kinetic * OR power OR moment * OR torque * OR force * OR load *) |
AND | |
IMU | (“inertial sensor *” OR “inertial measurement unit *” OR “inertial motion capture” OR IMU OR MARG OR “orientation sensor *” OR “motion sensor *” OR gyroscope OR accelerometer) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.J.; Lee, J.K. Inertial Motion Capture-Based Wearable Systems for Estimation of Joint Kinetics: A Systematic Review. Sensors 2022, 22, 2507. https://doi.org/10.3390/s22072507
Lee CJ, Lee JK. Inertial Motion Capture-Based Wearable Systems for Estimation of Joint Kinetics: A Systematic Review. Sensors. 2022; 22(7):2507. https://doi.org/10.3390/s22072507
Chicago/Turabian StyleLee, Chang June, and Jung Keun Lee. 2022. "Inertial Motion Capture-Based Wearable Systems for Estimation of Joint Kinetics: A Systematic Review" Sensors 22, no. 7: 2507. https://doi.org/10.3390/s22072507
APA StyleLee, C. J., & Lee, J. K. (2022). Inertial Motion Capture-Based Wearable Systems for Estimation of Joint Kinetics: A Systematic Review. Sensors, 22(7), 2507. https://doi.org/10.3390/s22072507