Contribution of Singular Spectral Analysis to Forecasting and Anomalies Detection of Indoors Air Quality
Abstract
:1. Introduction
2. SSA Fundamentals
3. HelpResponder Project—Case Study: Air Quality Evaluation
4. SSA Contribution to Air Quality Estimation
5. Air Quality Anomalies Detection
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Monitoring Health for the SDGs: Sustainable Development Goals; World Health Organization (WHO): Geneva, Switzerland, 2019. [Google Scholar]
- Rodríguez-Molano, J.I.; Obando-Bobadilla, L.M.; Ruiz-Nieto, M.P. Of cities traditional to smart cities. In Proceedings of the 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Caceres, Spain, 13–16 June 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Sanchez, L.; Galache, J.A.; Gutierrez, V.; Hernandez, J.M.; Bernat, J.; Gluhak, A.; Garcia, T. SmartSantander: The meeting point between Future Internet research and experimentation and the smart cities. In Proceedings of the 2011 Future Network Mobile Summit, Warsaw, Poland, 15–17 June 2011; pp. 1–8. Available online: http://ieeexplore.ieee.org/abstracl/documenl/6095264 (accessed on 10 April 2022).
- Santos, C.; Jiménez, J.A.; Espinosa, F. Effect of event-based sensing on IoT node power efficiency. Case study: Air quality monitoring in smart cities. IEEE Access 2019, 7, 132577–132586. [Google Scholar] [CrossRef]
- Kalajdjieski, J.; Stojkoska, B.R.; Trivodaliev, K. IoT Based Framework for Air Pollution Monitoring in Smart Cities. In Proceedings of the 28th Telecommunications forum TELFOR 2020, Belgrade, Serbia, 24–25 November 2020. [Google Scholar]
- González, E.; Casanova-Chafer, J.; Romero, A.; Vilanova, X.; Mitrovics, J.; Llobet, E. LoRa Sensor Network Development for Air Quality Monitoring or Detecting Gas Leakage Events. Sensors 2020, 20, 6225. [Google Scholar] [CrossRef] [PubMed]
- Popoola, O.A.M.; Carruthers, D.; Lad, C.; Bright, V.B.; Mead, M.I.; Stettler, M.E.J.; Saell, J.R.; Jones, R.L. Use of networks of low cost air quality sensors to quantify air quality in urban settings. Atmos. Environ. 2018, 194, 58–70. [Google Scholar] [CrossRef]
- Lasomsri, P.; Yanbuaban, P.; Kerdpoca, O.L.; Ouypornkochagorn, T. A Development of Low-Cost Devices for Monitoring Indoor Air Quality in a Large-Scale Hospital. In Proceedings of the 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Chiang Rai, Thailand, 18–21 July 2018. [Google Scholar] [CrossRef]
- Polichetti, T.; Miglietta, M.L.; Alfano, B.; Massera, E.; de Vito, S.; di Francia, G.; Faucon, A.; Saoutie, E.; Boisseau, S.; Marchand, N.; et al. A Networked Wearable Device for Chemical Multisensing”. Lecture Notes in Electrical Engineering; Springer International Publishing: Cham, Germany, 2019; pp. 17–24. [Google Scholar]
- Okigbo, C.A.; Seeam, A.; Guness, S.P.; Bellekens, X.; Bekaroo, G.; Ramsurrun, V. Low Cost Air Quality Monitoring: Comparing the Energy Consumption of an Arduino against a Raspberry Pi Based System; 2020 International Conference on Intelligent and Innovative Computing Applications (ICONIC); ACM: New York, NY, USA, 2020; 8p. [Google Scholar] [CrossRef]
- Kim, J.Y.; Chu, C.H.; Shin, S.M. ISSAQ: An integrated sensing systems for real-time indoor air quality monitoring. IEEE Sens. J. 2014, 14, 4230–4244. [Google Scholar] [CrossRef]
- Sendra, S.; Garcia-Navas, J.L.; Romero-Diaz, P.; Lloret, J. Collaborative LoRa-Based Sensor Network for Pollution Monitoring in Smart Cities. In Proceedings of the 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 10–13 June 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Khalifeh, A.; Darabkh, K.A.; Khasawneh, A.M.; Alqaisieh, I.; Salameh, M.; AlAbdala, A.; Alrubaye, S.; Alassaf, A. Wireless Sensor Networks for Smart Cities: Network Design, Implementation and Performance Evaluation. Electronics 2021, 10, 218. [Google Scholar] [CrossRef]
- Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 3-540-40172-5. [Google Scholar]
- Brockwell, P.J.; Davis, R.A. Intoduction to Time Series and Forecasting; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-29852-8. [Google Scholar] [CrossRef]
- Yongzhi, J. Application of fault detection using distributed sensors in smart cities. Phys. Commun. 2021, 46, 101182. [Google Scholar] [CrossRef]
- Golyandina, N.E.; Zhigljavsky, A. Singular Spectrum Analysis for Time Series; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Hassani, H. Singular Spectrum Analysis: Methodology and Comparison. J. Data Sci. 2007, 5, 239–257. [Google Scholar] [CrossRef]
- Ali-Kazmi, S.N.; Ulasyar, A.; Nadeem-Khan, M.F. IoT based Energy Efficient Smart Street Lighting Technique with Air Quality Monitoring. In Proceedings of the 2020 14th International Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, 16–17 December 2020. [Google Scholar] [CrossRef]
- EPA. Indoor Air Quality|EPA’s Report on the Environment (ROE)|US EPA. 2021. Available online: https://www.epa.gov/report-environment/indoor-air-quality (accessed on 25 November 2021).
- Liu, H.; Yan, G.; Duan, Z.; Chen, C. Intelligent modeling strategies for forecasting air quality time series: A review. Appl. Soft Comput. 2021, 102, 106957. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lee, S.-J.; Ouyang, C.-S.; Wu, C.-H. Air quality prediction by neuro fuzzy modeling approach. Appl. Soft Comput. 2020, 86, 105898. [Google Scholar] [CrossRef]
- Espinosa, R.; Palma, J.; Jiménez, F.; Kaminska, J.; Sciavicco, G.; Lucena-Sánchez, E. A time series forecasting based multi-criteria methodology for air quality prediction. Appl. Soft Comput. 2021, 113, 107850. [Google Scholar] [CrossRef]
- Ljung, L. System Identification Toolbox. User’s Guide; Matlab & Simulink, MathWorks: Natick, MA, USA, 2020. [Google Scholar]
- Ljung, L. System Identification Toolbox. Getting Started Guide; Matlab & Simulink, MathWorks: Natick, MA, USA, 2020. [Google Scholar]
- Ljung, L. System Identification Toolbox. Reference; Matlab & Simulink, MathWorks: Natick, MA, USA, 2020. [Google Scholar]
- Ljung, L. System Identification. Theory for the User, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 1999; ISBN 1-13-656695-2. [Google Scholar]
- Marques, C.A.F.; Ferreira, J.A.; Rocha, A.; Castanheira, J.M.; Melo-Gonçalves, P.; Vaz, N.; Dias, J.M. Singular spectrum analysis and forecasting of hydrological time series. Phys. Chem. Earth Parts A/B/C 2006, 31, 1172–1179. [Google Scholar] [CrossRef]
IAQ Index (%) (*) | Air Quality |
---|---|
0–10 | Good |
10–20 | Average |
20–30 | Little Bad |
30–40 | Bad |
40–60 | Worse |
60–100 | Very Bad |
Matlab Function | FIT (%) | MSE | Relative Time |
---|---|---|---|
Wavenet | 81.67 | 1.614 | 2.684 |
Sigmoidnet | 81.77 | 1.597 | 15.923 |
Treepartition | 82.24 | 1.516 | 1 |
SSA: Reconstruction Fit of the IAQ Time Series, L = 250 | |||||
---|---|---|---|---|---|
Eigenvalues | 4 | 6 | 8 | 10 | 12 |
Fit (%) | 80.27 | 81.33 | 81.77 | 82.09 | 82.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa, F.; Bartolomé, A.B.; Hernández, P.V.; Rodriguez-Sanchez, M.C. Contribution of Singular Spectral Analysis to Forecasting and Anomalies Detection of Indoors Air Quality. Sensors 2022, 22, 3054. https://doi.org/10.3390/s22083054
Espinosa F, Bartolomé AB, Hernández PV, Rodriguez-Sanchez MC. Contribution of Singular Spectral Analysis to Forecasting and Anomalies Detection of Indoors Air Quality. Sensors. 2022; 22(8):3054. https://doi.org/10.3390/s22083054
Chicago/Turabian StyleEspinosa, Felipe, Ana B. Bartolomé, Pablo Villoria Hernández, and M. C. Rodriguez-Sanchez. 2022. "Contribution of Singular Spectral Analysis to Forecasting and Anomalies Detection of Indoors Air Quality" Sensors 22, no. 8: 3054. https://doi.org/10.3390/s22083054
APA StyleEspinosa, F., Bartolomé, A. B., Hernández, P. V., & Rodriguez-Sanchez, M. C. (2022). Contribution of Singular Spectral Analysis to Forecasting and Anomalies Detection of Indoors Air Quality. Sensors, 22(8), 3054. https://doi.org/10.3390/s22083054