Pocketable Biosensor Based on Quartz-Crystal Microbalance and Its Application to DNA Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Chip
2.2. Device Design
2.3. Semiflow Cell
2.4. DNA Detection
2.4.1. Materials
2.4.2. Immobilization of Probe DNA
2.4.3. Observation of Target-DNA Capture
3. Results and Discussion
3.1. Fabrication of the Card-Sized QCM Device
3.2. Resolution of Frequency Counter
3.3. Confirmation of QCM Oscillation in Air and Water
3.4. DNA Detection Experiment
3.4.1. Monitoring of Protein and DNA Immobilization Processes
3.4.2. DNA Detection
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nirschl, M.; Reuter, F.; Vörös, J. Review of transducer principles for label-free biomolecular interaction analysis. Biosensors 2011, 1, 70–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Loo, J.F.C.; Chen, J.; Yam, Y.; Chen, S.C.; He, H.; Kong, S.K.; Ho, H.P. Recent advances in surface plasmon resonance imaging sensors. Sensors 2019, 19, 1266. [Google Scholar] [CrossRef] [Green Version]
- Madrid, R.E.; Ashur Ramallo, F.A.; Barraza, D.E.; Chaile, R.E. Smartphone-based biosensor devices for healthcare: Technologies, trends, and adoption by end-users. Bioengineering 2022, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Schmitter, D.; Cotter, G.; Voors, A.A. Clinical use of novel biomarkers in heart failure: Towards personalized medicine. Heart Fail. Rev. 2014, 19, 369–381. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, S.; Meng, N.; He, Y.; Lu, R.; Yan, G.R. ncRNA-encoded peptides or proteins and cancer. Mol. Ther. 2019, 27, 1718–1725. [Google Scholar] [CrossRef] [PubMed]
- Prabowo, B.A.; Cabral, P.D.; Freitas, P.; Fernandes, E. The challenges of developing biosensors for clinical assessment: A review. Chemosensors 2021, 9, 299. [Google Scholar] [CrossRef]
- Suthar, J.; Taub, M.; Carney, R.P.; Williams, G.R.; Guldin, S. Recent developments in biosensing methods for extracellular vesicle protein characterization. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, e1839. [Google Scholar] [CrossRef] [PubMed]
- Janshoff, A.; Galla, H.J.; Steinem, C. Piezoelectric mass-sensing devices as biosensors—An alternative to optical biosensors? Angew. Chem. Int. Ed. Engl. 2000, 39, 4004–4032. [Google Scholar] [CrossRef] [PubMed]
- Marx, K.A. Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution−surface interface. Biomacromolecules 2003, 4, 1099–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttry, D.A.; Ward, M.D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 1992, 92, 1355–1379. [Google Scholar] [CrossRef]
- Becker, B.; Cooper, M.A. A survey of the 2006–2009 quartz crystal microbalance biosensor literature. J. Mol. Recognit. 2011, 24, 754–787. [Google Scholar] [CrossRef]
- Skládal, P. Piezoelectric biosensors. TrAC Trends Anal. Chem. 2016, 79, 127–133. [Google Scholar] [CrossRef]
- Ozeki, T.; Morita, M.; Yoshimine, H.; Furusawa, H.; Okahata, Y. Hydration and energy dissipation measurements of biomolecules on a piezoelectric quartz oscillator by admittance analyses. Anal. Chem. 2007, 79, 79–88. [Google Scholar] [CrossRef]
- Yoshimine, H.; Kojima, T.; Furusawa, H.; Okahata, Y. Small Mass-change detectable quartz crystal microbalance and its application to enzymatic one-base elongation on DNA. Anal. Chem. 2011, 83, 8741–8747. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, H.; Uemura, K.; Yoshimine, H.; Okahata, Y. In situ monitoring of a trace intermediate during DNA phosphorylation by T4 polynucleotide kinase for transient kinetic studies. Analyst 2012, 137, 1334–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furusawa, H.; Nakayama, H.; Funasaki, M.; Okahata, Y. Kinetic characterization of small DNA-binding molecules interacting with a DNA strand on a quartz crystal microbalance. Anal. Biochem. 2016, 492, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Yazawa, K.; Furusawa, H. Probing multiple binding modes of DNA hybridization: A comparison between single-molecule observations and ensemble measurements. ACS Omega 2018, 3, 2084–2092. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, K.K.; Gordon, J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985, 57, 1770–1771. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshimine, H.; Sasaki, K.; Furusawa, H. Pocketable Biosensor Based on Quartz-Crystal Microbalance and Its Application to DNA Detection. Sensors 2023, 23, 281. https://doi.org/10.3390/s23010281
Yoshimine H, Sasaki K, Furusawa H. Pocketable Biosensor Based on Quartz-Crystal Microbalance and Its Application to DNA Detection. Sensors. 2023; 23(1):281. https://doi.org/10.3390/s23010281
Chicago/Turabian StyleYoshimine, Hiroshi, Kai Sasaki, and Hiroyuki Furusawa. 2023. "Pocketable Biosensor Based on Quartz-Crystal Microbalance and Its Application to DNA Detection" Sensors 23, no. 1: 281. https://doi.org/10.3390/s23010281
APA StyleYoshimine, H., Sasaki, K., & Furusawa, H. (2023). Pocketable Biosensor Based on Quartz-Crystal Microbalance and Its Application to DNA Detection. Sensors, 23(1), 281. https://doi.org/10.3390/s23010281