A Sliced Parabolic Equation Method to Characterize Maritime Radio Propagation
Abstract
:1. Introduction
- We investigate existing atmospheric duct models and their effects on maritime radio propagation. Subsequently, we propose a range-dependent duct model to support the actual duct environment. The spatial–temporal characteristics of atmospheric ducts are studied by using the meteorological reanalysis data.
- We propose a sliced parabolic equation algorithm to improve the prediction accuracy of path loss. Moreover, we derive the corresponding numerical solution and the approximate error expression in inhomogeneous environments.
- We validate the algorithm’s effectiveness by the 3.5 GHz field measurement with the actual meteorological data. Compared with the traditional method, the proposed algorithm has higher accuracy during the multiple duct periods.
- We evaluate the proposed algorithm in various range-dependent ducts, including evaporation ducts and elevated ducts. Simulation results show that the duct’s horizontal characteristics have a significant impact on path loss.
2. System Model and Preliminaries
2.1. Maritime Radio Propagation Scenarios
2.2. Descriptions of Atmospheric Duct Models
2.3. Radio Propagation Characteristics
3. Sliced Parabolic Equation Algorithm in Horizontally Inhomogeneous Duct Environments
3.1. Range-Dependent Duct Model
3.2. Sliced Parabolic Equation Algorithm
3.3. Feasibility Analysis
3.4. Workflow of the Proposed Algorithm
Algorithm 1. Sliced Parabolic Equation Algorithm. |
|
4. Field Measurement and Verification
4.1. Measurement Scenario
4.2. Distribution Characteristics of Atmospheric Ducts
4.3. Comparison with Measurements
5. Simulation Analysis
5.1. Range-Dependent Evaporation Duct
5.2. Range-Dependent Elevated Duct
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Feng, W.; Wang, J.; Quek, T.Q. Hybrid Satellite-UAV-Terrestrial Networks for 6G Ubiquitous Coverage: A Maritime Communications Perspective. IEEE J. Sel. Areas Commun. 2021, 39, 3475–3490. [Google Scholar] [CrossRef]
- Li, X.; Feng, W.; Wang, J.; Chen, Y.; Ge, N.; Wang, C. Enabling 5G on the Ocean: A Hybrid Satellite-UAV-Terrestrial Network Solution. IEEE Wirel. Commun. 2020, 27, 116–121. [Google Scholar] [CrossRef]
- Koo, H.; Chae, J.; Kim, W. Design and Experiment of Satellite-Terrestrial Integrated Gateway with Dynamic Traffic Steering Capabilities for Maritime Communication. Sensors 2023, 23, 1201. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Wang, J.; Jiang, C.; Duan, R.; Ren, Y.; Quek, T.Q. MagicNet: The Maritime Giant Cellular Network. IEEE Commun. Mag. 2021, 59, 117–123. [Google Scholar] [CrossRef]
- Dong, X.; You, Z.; Shen, Y.; Lu, D.; Xu, Y.; Liu, J. A Two-Dimensional Sybil-Proof Mechanism for Dynamic Spectrum Access. IEEE Trans. Mob. Comput. 2023, 1, 1–15. [Google Scholar] [CrossRef]
- Alqurashi, F.S.; Trichili, A.; Saeed, N.; Ooi, B.S.; Alouini, M.-S. Maritime Communications: A Survey on Enabling Technologies, Opportunities, and Challenges. IEEE Internet Things J. 2023, 10, 3525–3547. [Google Scholar] [CrossRef]
- Yu, G.; Ding, X.; Liu, S. Joint Resource Management and Trajectory Optimization for UAV-Enabled Maritime Network. Sensors 2022, 22, 9763. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Shim, W. LTE-Maritime: High-Speed Maritime Wireless Communication Based on LTE Technology. IEEE Access 2019, 7, 53172–53181. [Google Scholar] [CrossRef]
- Huo, Y.; Dong, X.; Beatty, S. Cellular Communications in Ocean Waves for Maritime Internet of Things. IEEE Internet Things J. 2020, 7, 9965–9979. [Google Scholar] [CrossRef]
- Yang, C.; Shi, Y.; Wang, J. The Preliminary Investigation of Communication Characteristics Using Evaporation Duct across the Taiwan Strait. J. Mar. Sci. Eng. 2022, 10, 1493. [Google Scholar] [CrossRef]
- Wang, J.; Qian, J.; Wang, J.; Gao, R.; Hu, Y.; Li, Y.; Feng, W. UAV Jitter May Have Merit: A Fading Analysis in Air-to-Sea Two Ray Channels. IEEE Wirel. Commun. Lett. 2022, 11, 2270–2274. [Google Scholar] [CrossRef]
- Dinc, E.; Alagoz, F.; Akan, O.B. Path-Loss and Correlation Analysis for Space and Polarization Diversity in Surface Ducts. IEEE Trans. Antennas Propag. 2016, 64, 4498–4503. [Google Scholar] [CrossRef]
- Chen, H.; Yin, F.; Huang, W.; Liu, M.; Li, D. Ocean Surface Drifting Buoy System Based on UAV-Enabled Wireless Powered Relay Network. Sensors 2020, 20, 2598. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chen, W.; Li, F.; Li, C.; Yang, K.; Liu, Y.; Chang, F. Channel Measurement and Modeling of the Small-Scale Fading Characteristics for Urban Inland River Environment. IEEE Trans. Wirel. Commun. 2020, 19, 3376–3389. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Yang, C. Long-Range Microwave Links Guided by Evaporation Ducts. IEEE Commun. Mag. 2022, 60, 68–72. [Google Scholar] [CrossRef]
- Colussi, L.C.; Schiphorst, R.; Teinsma, H.W.; Witvliet, B.A.; Fleurke, S.R.; Bentum, M.J.; Van Maanen, E.; Griffioen, J. Multiyear Trans-Horizon Radio Propagation Measurements at 3.5 GHz. IEEE Trans. Antennas Propag. 2018, 66, 884–896. [Google Scholar] [CrossRef]
- Rosson, P.; Estavoyer, J.; Lombard, L.; Miscopein, B.; Popon, X.; Doré, J.; Kténas, D.; Coquen, V.; Bris, R.J. Long-range Broadband wireless system for maritime communications in the 3.5 GHz band. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference, Norman, OK, USA, 27–30 September 2021; pp. 1–6. [Google Scholar]
- Zhang, H.; Zhou, T.; Xu, T.; Hu, H. Remote Interference Discrimination Testbed Employing AI Ensemble Algorithms for 6G TDD Networks. Sensors 2023, 23, 2264. [Google Scholar] [CrossRef]
- Dinc, E.; Akan, O.B. Beyond-line-of-sight Ducting Channels: Coherence Bandwidth, Coherence Time and Rain Attenuation. IEEE Commun. Lett. 2018, 19, 2274–2277. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Wang, W.; Yang, L.; Zhang, W. Research Challenges and Opportunities of UAV Millimeter-Wave Communications. IEEE Wirel. Commun. 2019, 26, 58–62. [Google Scholar] [CrossRef]
- Huang, L.-F.; Liu, C.-G.; Wang, H.-G.; Zhu, Q.-L.; Zhang, L.-J.; Han, J.; Zhang, Y.-S.; Wang, Q.-N. Experimental Analysis of Atmospheric Ducts and Navigation Radar Over-the-Horizon Detection. Remote Sens. 2022, 14, 2588. [Google Scholar] [CrossRef]
- Gunashekar, S.D.; Warrington, E.M.; Siddle, D.R. Long-term Statistics Related to Evaporation Duct Propagation of 2 GHz Radio Waves in the English Channel. Radio Sci. 2010, 45, 1–14. [Google Scholar] [CrossRef]
- Lee, Y.H.; Dong, F.; Meng, Y.S. Near Sea-Surface Mobile Radiowave Propagation at 5 GHz: Measurements and Modeling. Radioengineering 2014, 23, 824–830. [Google Scholar]
- Dahman, G.S.; Couillard, D.; Grandmaison, M.; Poitau, G.; Gagnon, F. Improved 2-Ray Model for Overwater Propagation Channels: Modeling the Instantaneous Variations in the Received Signal Strength. IEEE Wirel. Commun. Lett. 2019, 8, 865–868. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Ma, J. Exploration of X-Band Communication for Maritime Applications in the South China Sea. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 481–485. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, D.; Zhang, L.; Wang, H.; Kang, S.; Lin, L. C Band Transhorizon Signal Characterisations in Evaporation Duct Propagation Environment over Bohai Sea of China. IET Microw. Antennas Propag. 2019, 13, 407–413. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.F.; Li, Y.; Sun, Q.; Wu, Y.; Jin, S.; Quek, T.Q.; Xu, C. Wireless Channel Models for Maritime Communications. IEEE Access 2018, 6, 68070–68088. [Google Scholar] [CrossRef]
- Li, F.; Shui, Y.; Liang, J.; Yang, K.; Yu, J. Ship-to-ship Maritime Wireless Channel Modeling under Various Sea State Conditions Based on REL Model. Front. Mar. Sci. 2023, 10, 1134286. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Chang, H.; He, Y.; Bian, J. A Novel Non-Stationary 6G UAV Channel Model for Maritime Communications. IEEE J. Sel. Areas Commun. 2021, 39, 2992–3005. [Google Scholar] [CrossRef]
- Dinc, E.; Akan, Ö.B. Beyond-line-of-sight communications with ducting layer. IEEE Commun. Mag. 2014, 52, 37–43. [Google Scholar] [CrossRef]
- Ozgun, O.; Apaydin, G.; Kuzuoglu, M.; Sevgi, L. PETOOL: MATLAB-based One-way and Two-way Split-step Parabolic Equation Tool for Radiowave Propagation over Variable Terrain. Comput. Phys. Commun. 2011, 182, 2638–2654. [Google Scholar] [CrossRef]
- Ozgun, O.; Sahin, V.; Erguden, M.E.; Apaydin, G.; Yilmaz, A.E.; Kuzuoglu, M.; Sevgi, L. PETOOL v2.0: Parabolic Equation Toolbox with evaporation duct models and real environment data. Comput. Phys. Commun. 2020, 256, 107454. [Google Scholar] [CrossRef]
- Abdelmoaty, A.; Dahman, G.; Bousselmi, A.A.; Poitau, G.; Gagnon, F. Using Vertically Separated MIMO in Ship-to-Ship Communications. IEEE Access 2020, 8, 103601–103609. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, T.; Xu, T.; Wang, Y.; Hu, H. Statistical Modeling of Evaporation Duct Channel for Maritime Broadband Communications. IEEE Trans. Veh. Technol. 2022, 71, 10228–10240. [Google Scholar] [CrossRef]
- Guo, Q.; Long, Y. Two-Way Parabolic Equation Method for Radio Propagation over Rough Sea Surface. IEEE Trans. Antennas Propag. 2020, 68, 4839–4847. [Google Scholar] [CrossRef]
- Zaidi, K.S.; Jeoti, V.; Drieberg, M.; Awang, A.; Iqbal, A. Fading Characteristics in Evaporation Duct: Fade Margin for a Wireless Link in the South China Sea. IEEE Access. 2018, 6, 11038–11045. [Google Scholar] [CrossRef]
- He, Y.; Wang, C.; Chang, H.; Huang, J.; Sun, J.; Zhang, W.; Aggoune, E.M. A Novel 3D Non-Stationary Maritime Wireless Channel Model. IEEE Trans. Commun. 2022, 70, 2102–2116. [Google Scholar] [CrossRef]
- Lim, T.H.; Wang, S.; Chong, Y.; Park, Y.B.; Ko, J.; Choo, H. High Altitude Ducts Causing Abnormal Wave Propagation in Coastal Area of Korea. Microw. Opt. Technol. Lett. 2020, 62, 643–650. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Shi, Y.; Yang, K. Measurements and Analysis of Maritime Wireless Channel at 8 GHz in the South China Sea Region. IEEE Trans. Antennas Propag. 2023, 71, 2674–2681. [Google Scholar] [CrossRef]
- Hoeft, M.; Gierlowski, K.; Wozniak, J. Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach. Sensors 2023, 23, 400. [Google Scholar] [CrossRef]
- Sit, H.; Earls, C.J. Deep Learning for Classifying and Characterizing Atmospheric Ducting within the Maritime Setting. Comput. Geosci. 2021, 157, 104919. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, T.; Xu, T.; Wang, Y.; Hu, H. FNN-Based Prediction of Wireless Channel with Atmospheric Duct. In Proceedings of the 2021 IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Yang, C.; Wang, J. The Investigation of Cooperation Diversity for Communication Exploiting Evaporation Ducts in the South China Sea. IEEE Trans. Antennas Propag. 2022, 70, 8337–8347. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, J.; Li, J.; Zhao, D.; Huang, L.; Zhu, J.; Lu, J.; Wang, X. An Evaporation Duct Height Prediction Model Based on a Long Short-Term Memory Neural Network. IEEE Trans. Antennas Propag. 2021, 69, 7795–7804. [Google Scholar] [CrossRef]
- Yang, C.; Shi, Y.; Wang, J.; Feng, F. Regional Spatiotemporal Statistical Database of Evaporation Ducts Over the South China Sea For Future Long-Range Radio Application. IEEE J. Sel. Top. Appl. Earth. Obs. Remote. Sens. 2022, 15, 6432–6444. [Google Scholar] [CrossRef]
- Sirkova, I. Brief Review on PE Method Application to Propagation Channel Modeling in Sea Environment. Cent. Eur. J. Eng. 2012, 2, 19–38. [Google Scholar] [CrossRef]
- Wei, T.; Feng, W.; Chen, Y.; Wang, C.-X.; Ge, N.; Lu, J. Hybrid Satellite-terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges. IEEE Internet Things J. 2021, 8, 8910–8934. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zhou, T.; Hu, H. A Traceable Approach to Remote Interference Management for New Radio. In Proceedings of the 2019 IEEE International Conference on Communications Workshops, Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Wei, T.; Feng, W.; Wang, J.; Ge, N.; Lu, J. Exploiting the Shipping Lane Information for Energy-Efficient Maritime Communications. IEEE Trans. Veh. Technol. 2019, 68, 7204–7208. [Google Scholar] [CrossRef]
- Liu, X.; Xu, B.; Wang, X.; Zheng, K.; Chi, K.; Tian, X. Impacts of Sensing Energy and Data Availability on Throughput of Energy Harvesting Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2023, 72, 747–759. [Google Scholar] [CrossRef]
- International Telecommunication Union. The Radio Refractive Index: Its Formula and Refractivity Data; Recommendation ITU-R P.453-13; ITU: Geneva, Switzerland, 2019. [Google Scholar]
- International Telecommunication Union. Prediction Procedure for the Evaluation of Interference between Stations on the Surface of the Earth at Frequencies Above about 0.1 GHz; Recommendation ITU-R P.452-16; ITU: Geneva, Switzerland, 2021. [Google Scholar]
- Dinc, E.; Akan, O.B. Channel Model for the Surface Ducts: Large-Scale Path-Loss, Delay Spread, and AOA. IEEE Trans. Antennas Propag. 2015, 63, 2728–2738. [Google Scholar] [CrossRef]
- Gilles, M.A.; Earls, C.J.; Bindel, D.S. A Subspace Pursuit Method to Infer Refractivity in the Marine Atmospheric Boundary Layer. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5606–5617. [Google Scholar] [CrossRef]
- Xu, L.; Yardim, C.; Mukherjee, S.; Burkholder, R.J.; Wang, Q.; Fernando, H.J.S. Frequency Diversity in Electromagnetic Remote Sensing of Lower Atmospheric Refractivity. IEEE Trans. Antennas Propag. 2022, 70, 547–558. [Google Scholar] [CrossRef]
Location | Antenna Height | Frequency | Distance |
---|---|---|---|
Burum | 6 m | - | - |
Amsterdam | 107 m | 3.449001 GHz | 138 km |
Goes | 75 m | 3.449005 GHz | 253 km |
Goes–Burum Path | Amsterdam–Burum Path |
---|---|
11 December 2013 | 11 December 2013 |
19 July 2014 | 30 April 2014 |
21 April 2015 | 7 June 2014 |
2 August 2015 | 1 August 2014 |
19 July 2016 | 10 August 2015 |
27 August 2016 | 7 September 2016 |
Parameters | Values |
---|---|
Frequency | 3.45 GHz |
Antenna height | 75 m (Goes) and 107 m (Amsterdam) |
Polarization | vertical |
3 dB Beamwidth | |
Elevation angle | |
Max range | 253 km |
Max height | 400 m |
Range step size | 80 m |
Height step | 1 m |
Simulation Parameters | |
---|---|
Frequency | 3.5 GHz |
Antenna height | 15 m |
Polarization | Horizontal |
3 dB Beamwidth | |
Elevation angle | |
Max range | 0–210 km |
Max height | 0–300 m |
Meteorological Information | |
Wind speed | 8 m/s |
Height of wind speed | 10 m |
Temperature of air (Ta) | 21, 21.5, 22, 20.5, 20 °C |
Height of temperature | 2 m |
Relative humidity | 67.8% |
Height of relative humidity | 2 m |
Sea level pressure | 1013.25 hPa |
Sea surface temperature | 20 °C |
Corresponding evaporation duct height | |
Evaporation duct height | 25, 32, 37, 19, 16 m |
Simulation Parameters | |
---|---|
Frequency | 3.5 GHz |
Antenna height | 25 m |
Polarization | Horizontal |
3 dB Beamwidth | |
Elevation angle | |
Max range | 0–210 km |
Max height | 0–300 m |
Elevated duct heights of three slices [Base height (m), Top height (m)] | |
Case D | [20, 55], [20, 55], [20, 55] |
Case E | [20, 55], [23, 55], [27, 55] |
Case F | [20, 55], [17, 55], [13, 55] |
Advantages | It supports range-dependent evaporation ducts and elevated ducts. |
It supports standard meteorological reanalysis data. | |
It can support boundary condition setting. | |
It can support calm sea surface conditions. | |
Detailed feasibility analysis. | |
Long-distance measurement verification at 3.5 GHz. | |
Disadvantages | It does not support detailed sea surface roughness analysis. |
It does not support millimeter-wave band. | |
It does not support complex inland terrain. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhou, T.; Xu, T.; Hu, H. A Sliced Parabolic Equation Method to Characterize Maritime Radio Propagation. Sensors 2023, 23, 4721. https://doi.org/10.3390/s23104721
Wang Y, Zhou T, Xu T, Hu H. A Sliced Parabolic Equation Method to Characterize Maritime Radio Propagation. Sensors. 2023; 23(10):4721. https://doi.org/10.3390/s23104721
Chicago/Turabian StyleWang, Yuzhen, Ting Zhou, Tianheng Xu, and Honglin Hu. 2023. "A Sliced Parabolic Equation Method to Characterize Maritime Radio Propagation" Sensors 23, no. 10: 4721. https://doi.org/10.3390/s23104721
APA StyleWang, Y., Zhou, T., Xu, T., & Hu, H. (2023). A Sliced Parabolic Equation Method to Characterize Maritime Radio Propagation. Sensors, 23(10), 4721. https://doi.org/10.3390/s23104721