Design of High-Sensitivity Flexible Low-Profile Spiral Antenna Sensor for GIS Built-in PD Detection
Abstract
:1. Introduction
2. Antenna Sensor Design
2.1. Basic Principle of the Spiral Antenna Sensor
2.2. Flexible Base
2.3. Design and Optimization of the Flexible Low-Profile Spiral Antenna Sensor
2.3.1. Impedance Matching Based on Equiangular Spiral
2.3.2. Effect of Clearance Ratio on Impedance Matching
2.3.3. Impedance Matching Optimization
2.3.4. Influence of Micro Water on Antenna Sensor Performance and Object Production
3. Antenna Sensor Performance Analysis
3.1. Voltage Standing Wave Ratio
3.2. Radiation Pattern
4. PD Detection Performance Test
4.1. PD Detection Test Platform
4.2. GIS Built-in PD Detection Test
5. Summary
- (1)
- The simulation and measurement results show that, the low-frequency and high-frequency performance of the antenna sensor is optimized by improving the inner ring CR of the equiangular spiral. In total, 89.1% of the UHF band can be covered with VSWR ≤ 5. The maximum gre under different bending radii is up to 6.1 dB. The diameter and profile height of the designed antenna sensor is 137 mm and 0.3 mm, which is 25.4% and 99.7% smaller than the traditional spiral antenna. These features provide conditions for the antenna sensor to be flexibly built into GISs.
- (2)
- The VSWR of the antenna sensor in the insulating gas with different εr changes regularly. Therefore, it has the potential for the detection of micro water in GISs.
- (3)
- The GIS built-in PD test shows that the low discharge magnitude of the PD signal (4.5 pC) could be accurately detected by the antenna sensor. In addition, the antenna sensor had the ability to quantify the severity of PD while achieving GIS insulation state monitoring.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xing, Y.; Wang, Z.; Liu, L.; Xu, Y.; Yang, Y.; Liu, S.; Zhou, F.; He, S.; Li, C. Defects and failure types of solid insulation in gas-insulated switchgear: In situ study and case analysis. High Volt. 2021, 7, 158–164. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, D.; Wang, Y.; Zhou, C.; Lu, H.; Zhang, X. Defect recognition and condition assessment of epoxy insulators in gas insulated switchgear based on multi-information fusion. Measurement 2022, 190, 110701. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Xie, D.; Wang, X.; Yang, A.; Rong, M. Time–frequency analysis of PD-induced UHF signal in GIS and feature extraction using invariant moments. IET Sci. Meas. Technol. 2018, 12, 169–175. [Google Scholar] [CrossRef]
- Li, W.Y. Experimental Research on the Sensitivity of Partial Discharge Ultra High Frequency Sensor Structure Parameters. J. Nanoelectron. Optoelectron. 2021, 16, 911–918. [Google Scholar] [CrossRef]
- Moore, P.J.; Portugues, I.E.; Glover, I.A. Partial discharge investigation of a power transformer using wireless wideband radio-frequency measurements. IEEE Trans. Power Deliv. 2006, 21, 528–530. [Google Scholar] [CrossRef]
- Hoek, S.M.; Neuhold, S.M. Tuned Medium-Band UHF PD Measurement Method for GIS. Water Energy Int. 2014, 70, 50–51. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, C.; Guan, J. UHF LS Peano fractal antenna sensor for PD GIS detection. J. Electromagn. Waves Appl. 2020, 34, 1797–1811. [Google Scholar] [CrossRef]
- Mor, A.R.; Heredia, L.C.; Muñoz, F.A. A magnetic loop antenna sensor for partial discharge measurements on GIS. Int. J. Electr. Power Energy Syst. 2020, 115, 105514. [Google Scholar]
- Lu, Q.; Zheng, S.; Li, X.; Wang, L.; Tang, Z.; Zhan, H. Study on Propagation Characteristics of UHF Signal via Hole of GIS Mental Flange and Development of External Radiating Antenna sensor. Power Syst. Technol. 2013, 37, 2303–2309. [Google Scholar]
- Chen, H.C. Ultra-High Frequency Micro-Strip Antenna sensor Design for Gas Insulated Switch Partial Discharge Detection. Adv. Sci. Lett. 2012, 11, 268–273. [Google Scholar] [CrossRef]
- Kim, D.S.; Hwang, C.M.; Kim, Y.N.; Choi, J.O.; Seo, W.B.; Han, B.S.; Choi, S.H.; Jang, Y.M. Development of an Intelligent Spacer Built into the Internal Type UHF Partial Discharge Sensor. In Proceedings of the IEEE International Symposium on Electrical Insulation, Vancouver, BC, Canada, 9–12 June 2008; pp. 396–399. [Google Scholar]
- Wang, Y.; Guan, J.; Geng, Y.; Feng, C. A Miniaturised LS Peano Fractal Antenna sensor for Partial Discharge Detection in Gas Insulated Switchgear. Sens. Transducers 2020, 240, 19–25. [Google Scholar]
- Ji, S.; Wang, Y.; Li, J.; Meng, Y.; Liang, N.; Sun, D.; Wang, W.; He, W. Review of UHF Antenna sensor for Detecting Partial Discharge in GIS. High Volt. Appar. 2015, 51, 163–172. [Google Scholar]
- D’Souza, M.; Bouyer, R.; Dhara, R. Modularization of High Voltage Gas Insulated Substations. IEEE Trans. Ind. Appl. 2020, 59, 4662–4669. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Li, W.; Duan, X. A Rectangular Planar Spiral Antenna sensor for GIS Partial Discharge Detection. Int. J. Antenna Sens. Propag. 2014, 2014, 1–7. [Google Scholar]
- Li, T.; Rong, M.Z.; Wang, X.H.; Zhang, A.X.; Pan, J.; Liu, H.L. Design, Optimization and Experiment Study of Internal UHF Sensor for Partial Discharge Detection in GIS. Proc. CSEE 2017, 37, 5483–5493. [Google Scholar]
- Zhang, G.; Chen, K.; Li, X.; Wang, K.; Fang, R.; Liu, J. Flexible built-in miniature Archimedes spiral antenna sensor for PD detection in GIS. High Volt. Eng. 2022, 48, 2254. [Google Scholar]
- Zhang, H.; Zhang, G.; Zhang, X.; Tian, H.; Lu, C.; Liu, J.; Zhang, Y. PD Flexible Built-In High-Sensitivity Elliptical Monopole Antenna Sensor. Sensors 2022, 22, 4982. [Google Scholar] [CrossRef]
- Bin, F.; Wang, F.; Sun, Q.; Lin, S.; Xie, Y.; Fan, M. Internal UHF antenna sensor for partial discharge detection in GIS. IET Microw. Antenna Sens. Propag. 2018, 12, 2184–2190. [Google Scholar] [CrossRef]
- Cheng, L.; Wen, H.; Liu, Y.; Jiang, Y.; Zhou, Z.; Zhang, J.; Zhang, G.; Mao, H. Study on Flexible Built-in Miniature Archimedes Spiral Antenna sensor Sensor for High-voltage electrical equipment PD Detection. In Proceedings of the 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE), Hangzhou, China, 15–17 April 2022; pp. 1477–1482. [Google Scholar]
- Lee, J.; Cho, J.; Choi, J.; Choo, H.; Jung, K.Y. Design of a miniaturized spiral antenna sensor for partial discharge detection system. Microw. Opt. Technol. Lett. 2018, 60, 75–78. [Google Scholar] [CrossRef]
- Hrtoň, M.; Konečná, A.; Horák, M.; Šikola, T.; Křápek, V. Plasmonic Antenna sensors with Electric, Magnetic, and Electromagnetic Hot Spots Based on Babinet’s Principle. Phys. Rev. Appl. 2019, 13, 054045. [Google Scholar] [CrossRef]
- Tiwari, A.R.; Tiwari, S.D.; Khurshid, A.A. Design and Bending Analysis of Wearable Compact Patch Antenna sensor for Medical Telemetry Based on Flexible Material. ECS Trans. 2022, 107, 2022. [Google Scholar] [CrossRef]
- Ramanujam, R.; Perumalsamy, M. An ultra-thin flexible four port MIMO antenna sensor for WBAN communications. Microw. Opt. Technol. Lett. 2022, 64, 1245–1251. [Google Scholar] [CrossRef]
- Zhao, M.; Cao, X.; Zhou, K.; Fu, Y.; Li, X.; Wan, L. Flexible Sensor Array Based on Transient Earth Voltage for Online Partial Discharge Monitoring of Cable Termination. Sensors 2020, 20, 6646. [Google Scholar] [CrossRef]
- de Castro, B.A.; de Melo Brunini, D.; Baptista, F.G.; Andreoli, A.L.; Ulson, J.A. Assessment of Macro Fiber Composite Sensors for Measurement of Acoustic Partial Discharge Signals in Power Transformers. IEEE Sens. J. 2017, 17, 6090–6099. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Z.; Huo, S.; Lin, J.; He, S. Improved Dielectric Breakdown Strength of Polyimide by Incorporating Polydopamine-Coated Graphitic Carbon Nitride. Polymers 2022, 14, 385. [Google Scholar] [CrossRef] [PubMed]
- Deb, P.K.; Moyra, T.; Bhattacharyya, B.K. Miniaturized and enhanced bandwidth Marchand balun using CSRR. IET Microw. Antenna Sens. Propag. 2021, 15, 788–796. [Google Scholar] [CrossRef]
- Vinayagamoorthy, K. Design and Implementation of Wideband Baluns for Archimedean Spiral Antenna Sensors. Master’s Thesis, Queensland University of Technology, Brisbane City, QLD, Australia, 2011. [Google Scholar]
- Wang, Y.W.; Wang, G.M.; Zeng, H.Y. Low-profile Archimedean spiral antenna sensor with approximate 50 Ω input impedance. Int. J. Electron. Lett. 2013, 1, 151–158. [Google Scholar] [CrossRef]
- Zhao, T.; Judd, M.D.; Stewart, B.G. Attenuation Characteristics and Time Delay of PD Electromagnetic Wave Propagation in GIS Systems. IEEE Trans. Power Deliv. 2022, 37, 937–946. [Google Scholar] [CrossRef]
- Hampton, B.F.; Meats, R.J. Diagnostic measurements at UHF in gas insulated substations. IEEE Proc. C Gener. Transm. Distrib. 2002, 135, 137–145. [Google Scholar] [CrossRef]
- Zeng, F.; Li, H.; Zhang, M.; Lei, Z.; Li, C.; Tang, J. Isotope tracing experimental study on the effects of trace H2O on the over-thermal decomposition of SF6. J. Phys. D Appl. Phys. 2020, 53, 355501. [Google Scholar] [CrossRef]
- IEC 60270; High-Voltage Test Techniques: Partial Discharge Measurements. IEC: Geneva, Switzerland, 2015.
- DL/T 1432.4-2017; Testing Specification for On-Line Monitoring Device for Transformation Equipment Part 4: On-Line Partial Dis-Charge Monitoring Device for Gas-Insulated Metal-Enclosed Switchgear based on Ultra High Frequency. China Electric Power Publishing House: Beijing, China, 2017.
Material | FR-4 | PI | PDMS | PET | |
---|---|---|---|---|---|
Parameter | |||||
εr | 4.4 | 3.5 | 3 | 4 | |
tanδ | 0.026 | 0.004 | 0.02 | 0.04 | |
Breakdown strength (normal temperature)/(kV∙mm−1) | 40 | 180 | 20 | 380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhang, G.; Liu, X.; Chen, K.; Zhang, X. Design of High-Sensitivity Flexible Low-Profile Spiral Antenna Sensor for GIS Built-in PD Detection. Sensors 2023, 23, 4722. https://doi.org/10.3390/s23104722
Hu X, Zhang G, Liu X, Chen K, Zhang X. Design of High-Sensitivity Flexible Low-Profile Spiral Antenna Sensor for GIS Built-in PD Detection. Sensors. 2023; 23(10):4722. https://doi.org/10.3390/s23104722
Chicago/Turabian StyleHu, Xukun, Guozhi Zhang, Xiaotian Liu, Kang Chen, and Xiaoxing Zhang. 2023. "Design of High-Sensitivity Flexible Low-Profile Spiral Antenna Sensor for GIS Built-in PD Detection" Sensors 23, no. 10: 4722. https://doi.org/10.3390/s23104722
APA StyleHu, X., Zhang, G., Liu, X., Chen, K., & Zhang, X. (2023). Design of High-Sensitivity Flexible Low-Profile Spiral Antenna Sensor for GIS Built-in PD Detection. Sensors, 23(10), 4722. https://doi.org/10.3390/s23104722