Research Progress of Horizontal Cavity Surface-Emitting Laser
Abstract
:1. Introduction
2. Structure and Principle of the HCSEL
2.1. Grating Diffraction
2.2. Photonic Crystal Diffraction Structure
2.3. Mirror-Type
3. Research Progress of HCSEL
3.1. SE-DFB Laser
3.1.1. Linear Second-Order Grating
3.1.2. Curved Second Order Grating
3.1.3. High-Order Grating SE-DFB Laser
3.1.4. Surface-Emitting DFB Lasers from New Semiconductor Materials
3.2. Photonic Crystal Diffraction Structure
3.2.1. Single Lattice Structure
3.2.2. Double-Lattice Structure
3.2.3. Open-Dirac Cavities
3.2.4. Topological Cavity Structure
3.3. Mirror-Type HCSEL
4. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dikopoltsev, A.; Harder, T.H.; Lustig, E.; Egorov, O.A.; Beierlein, J.; Wolf, A.; Lumer, Y.; Emmerling, M.; Schneider, C.; Hoefling, S.; et al. Topological insulator vertical-cavity laser array. Science 2021, 373, 1514–1517. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Qin, L.; Peng, H.; Ning, Y.; Wang, L. Advances in high power high beam quality diode lasers. Chin. Sci. Bull. 2017, 62, 3719–3728. [Google Scholar] [CrossRef]
- Wang, A.; Sopeña, P.; Grojo, D. Burst mode enabled ultrafast laser inscription inside gallium arsenide. Int. J. Extrem. Manuf. 2022, 4, 045001. [Google Scholar] [CrossRef]
- Wang, F.; Ren, F.; Ma, Z.; Qu, L.; Gourgues, R.; Xu, C.; Baghdasaryan, A.; Li, J.; Zadeh, I.E.; Los, J.W.N.; et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol. 2022, 17, 653–660. [Google Scholar] [CrossRef]
- Wu, K.; Pan, S. A review on structure-performance relationship toward the optimal design of infrared nonlinear optical materials with balanced performances. Coord. Chem. Rev. 2018, 377, 191–208. [Google Scholar] [CrossRef]
- Li, Z.; Cao, H.; Wang, Y.; Dai, C. An Information Coding System Based on Bidirectional Mode-Locked Fiber Laser. IEEE J. Sel. Top. Quantum. Electron. 2023, 29, 1100108. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, Z.-J.; Chen, Y.-Y.; Li, Z.-J.; Qin, L.; Liang, L.; Lei, Y.-X.; Qiu, C.; Song, Y.; Shan, X.-N.; et al. High power semiconductor laser array with single-mode emission. Chin. Phys. B 2022, 31, 054209. [Google Scholar] [CrossRef]
- Sanchez, M.; Gallego, D.; Lamela, H. High current short pulse driver using a high power diode laser for optoacoustic biomedical imaging techniques. Opt. Express 2022, 30, 44954–44966. [Google Scholar] [CrossRef]
- Song, Y.; Lv, Z.; Bai, J.; Niu, S.; Wu, Z.; Qin, L.; Chen, Y.; Liang, L.; Lei, Y.; Jia, P.; et al. Processes of the Reliability and Degradation Mechanism of High-Power Semiconductor Lasers. Crystals 2022, 12, 675. [Google Scholar] [CrossRef]
- Koester, J.P.; Putz, A.; Wenzel, H.; Wünsche, H.J.; Radziunas, M.; Stephan, H.; Wilkens, M.; Zeghuzi, A.; Knigge, A. Mode competition in broad-ridge-waveguide lasers. Semicond. Sci. Technol. 2020, 36, 015014. [Google Scholar] [CrossRef]
- Yamagata, Y.; Kaifuchi, Y.; Nogawa, R.; Yoshida, K.; Morohashi, R.; Yamaguchi, M.; Zediker, M.S. Highly efficient 9xx-nm band single emitter laser diodes optimized for high output power operation. In Proceedings of the High-Power Diode Laser Technology XVIII, San Francisco, CA, USA, 2–4 February 2020. [Google Scholar]
- Seurin, J.-F.; Ghosh, C.L.; Khalfin, V.; Miglo, A.; Xu, G.; Wynn, J.D.; Pradhan, P.; D′Asaro, L.A. Progress in High-power high-efficiency 2D VCSEL arrays. In Proceedings of the Conference on Vertical-Cavity Surface-Emitting Lasers XII, San Jose, CA, USA, 28–29 January 2009. [Google Scholar]
- Hu, S.; Gu, X.; Ibrahim, H.R.; Nakahama, M.; Shinada, S.; Koyama, F. 1060-nm single-mode transverse coupled cavity VCSEL with intra-cavity surface relief for 58-Gbps modulation and 5-km single-mode fiber transmission. Appl. Phys. Lett. 2022, 120, 261110. [Google Scholar] [CrossRef]
- Holmes, D.A.; Siegman, A.E. New developments in laser resonators. In Proceedings of the Optical Resonators, Los Angeles, CA, USA, 1 June 1990. [Google Scholar]
- Bhowmik, A.; Siegman, A.E. Defining, measuring, and optimizing laser beam quality. In Proceedings of the Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, Los Angeles, CA, USA, 18–20 January 1993. [Google Scholar]
- Biasco, S.; Ciavatti, A.; Li, L.; Giles Davies, A.; Linfield, E.H.; Beere, H.; Ritchie, D.; Vitiello, M.S. Highly efficient surface-emitting semiconductor lasers exploiting quasi-crystalline distributed feedback photonic patterns. Light Sci. Appl. 2020, 9, 54. [Google Scholar] [CrossRef]
- Dubinskii, M.; Kanskar, M.; Post, S.G.; Cai, J.; Kedlaya, D.; Olson, D.; Xiao, Y.; Klos, T.; Martin, M.; Galstad, C.; et al. High-brightness 975-nm surface-emitting distributed feedback laser and arrays. In Proceedings of the Laser Technology for Defense and Security VI, Orlando, FL, USA, 5–6 April 2010. [Google Scholar]
- Mujagić, E.; Schwarzer, C.; Yao, Y.; Chen, J.; Gmachl, C.; Strasser, G. Two-dimensional broadband distributed-feedback quantum cascade laser arrays. Appl. Phys. Lett. 2011, 98, 141101. [Google Scholar] [CrossRef]
- Dong, Q.; Fu, X.; Seyitliyev, D.; Darabi, K.; Mendes, J.; Lei, L.; Chen, Y.-A.; Chang, C.-H.; Amassian, A.; Gundogdu, K.; et al. Cavity Engineering of Perovskite Distributed Feedback Lasers. ACS Photonics 2022, 9, 3124–3133. [Google Scholar] [CrossRef]
- Kouno, T.; Kishino, K.; Yamano, K.; Kikuchi, A. Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission. Opt. Express 2009, 17, 20440–20447. [Google Scholar] [CrossRef]
- Streifer, W.; Scifres, D.R.; Burnham, R.D. Coupled wave analysis of DFB and DBR lasers. IEEE J. Quantum Electron. 1977, 13, 134–141. [Google Scholar] [CrossRef]
- Panajotov, K.; Dems, M. Photonic crystal vertical-cavity surface-emitting lasers with true photonic bandgap. Opt. Lett. 2010, 35, 829–831. [Google Scholar] [CrossRef]
- Imada, M.; Chutinan, A.; Noda, S.; Mochizuki, M. Multidirectionally distributed feedback photonic crystal lasers. Phys. Rev. B 2002, 65, 195306. [Google Scholar] [CrossRef]
- Lu, H.; Tong, C.; Wang, Z.; Tian, S.; Wang, L.; Tong, H.; Li, R.; Wang, L. Research Advancement on band-edge Mode Photonic Crystal Surface-Emitting Semiconductor Laser. Chin. J. Lasers 2020, 47, 0701014. [Google Scholar]
- Noda, S.; Yokoyama, M.; Imada, M.; Chutinan, A.; Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 2001, 293, 1123–1125. [Google Scholar] [CrossRef]
- Inoue, T.; Yoshida, M.; Gelleta, J.; Izumi, K.; Yoshida, K.; Ishizaki, K.; De Zoysa, M.; Noda, S. General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-mode operation. Nat. Commun. 2022, 13, 3262. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Goodhue, W.D.; Wang, C.A.; Bailey, R.J.; Lincoln, G.A.; Johnson, G.D.; Missaggia, L.J.; Walpole, J.N. CW operation of monolithic arrays of surface-emitting folded-cavity InGaAs/AlGaAs diode-lasers. IEEE Photonics Technol. Lett. 1993, 5, 747–750. [Google Scholar] [CrossRef]
- Lee, Y.H.; Green, M.; Behfar, A.; Morrow, A.; Schremer, A.; Stagarescu, C.; Koyama, F.; Luo, Y. Horizontal cavity vertically emitting lasers with integrated monitor photodiodes. In Proceedings of the Optoelectronic Materials and Devices, Gwangju, Republic of Korea, 5–7 September 2006. [Google Scholar]
- Shuang, L.; Botez, D. Design for high-power single-mode operation from 2-D surface-emitting ROW-DFB lasers. IEEE Photonics Technol. Lett. 2005, 17, 519–521. [Google Scholar] [CrossRef]
- Garrod, T.J.; Zediker, M.S.; Olson, D.; Xiao, Y.; Kanskar, M. Long wavelength surface-emitting distributed feedback (SE-DFB) laser for range finding applications. In Proceedings of the High-Power Diode Laser Technology and Applications X, San Francisco, CA, USA, 22–24 January 2012. [Google Scholar]
- Hirose, K.; Liang, Y.; Kurosaka, Y.; Watanabe, A.; Sugiyama, T.; Noda, S. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 2014, 8, 406–411. [Google Scholar] [CrossRef]
- Chang, T.-Y.; Pan, C.-H.; Hong, K.-B.; Lin, C.-H.; Lin, G.; Lee, C.-P.; Lu, T.-C. Quantum-dot surface emitting distributed feedback lasers using Indium–Tin–Oxide as top claddings. IEEE Photonics Technol. Lett. 2016, 28, 1633–1636. [Google Scholar] [CrossRef]
- Liu, C.W.; Zhang, J.C.; Jia, Z.W.; Zhao, Y.; Zhuo, N.; Zhai, S.Q.; Wang, L.J.; Liu, J.Q.; Liu, S.-M.; Liu, F.Q.; et al. Coupled Ridge Waveguide Substrate-Emitting DFB Quantum Cascade Laser Arrays. IEEE Photonics Technol. Lett. 2017, 29, 213–216. [Google Scholar] [CrossRef]
- Cheng, F.M.; Zhang, J.C.; Jia, Z.-W.; Zhao, Y.; Wang, D.-B.; Zhuo, N.; Zhai, S.-Q.; Wang, L.-J.; Liu, J.-Q.; Liu, S.-M.; et al. High power substrate-emitting quantum cascade laser with a symmetric mode. IEEE Photonics Technol. Lett. 2017, 29, 1994–1997. [Google Scholar] [CrossRef]
- Jin, Y.; Gao, L.; Chen, J.; Wu, C.; Reno, J.L.; Kumar, S. High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings. Nat. Commun. 2018, 9, 1407. [Google Scholar] [CrossRef]
- De Zoysa, M.; Yoshida, M.; Ishizaki, K.; Song, B.-S.; Tanaka, Y.; Hatsuda, R.; Fukuhara, S.; Noda, S. 7W CW operation of double-lattice photonic-crystal lasers. In Proceedings of the 26th IEEE International Conference on Semiconductor Laser, Sante Fe, NM, USA, 16–19 September 2018. [Google Scholar]
- Lu, H.Y.; Tian, S.C.; Tong, C.Z.; Wang, L.J.; Rong, J.M.; Liu, C.Y.; Wang, H.; Shu, S.L.; Wang, L.J. Extracting more light for vertical emission: High power continuous wave operation of 1.3-mum quantum-dot photonic-crystal surface-emitting laser based on a flat band. Light Sci. Appl. 2019, 8, 108. [Google Scholar] [CrossRef]
- Slivken, S.; Wu, D.; Razeghi, M. Surface Emitting, Tunable, Mid-Infrared Laser with High Output Power and Stable Output Beam. Sci. Rep. 2019, 9, 549. [Google Scholar] [CrossRef]
- Hai, Y.; Zou, Y.; Fan, J.; Zhang, H.; Wang, H.; Zhu, L.; Ma, X. Narrow-linewidth surface-emitting distributed feedback laser emitting from P-surface. Opt. Commun. 2021, 480, 126499. [Google Scholar] [CrossRef]
- Katsuno, S.; Yoshida, M.; Izumi, K.; Inoue, T.; Ishizaki, K.; De Zoysa, M.; Hatsuda, R.; Gelleta, J.; Enoki, K.; Noda, S. 29-W Continuous-Wave Operation of Photonic-Crystal Surface-Emitting Laser (PCSEL). In Proceedings of the 2021 27th International Semiconductor Laser Conference (ISLC), Potsdam, Germany, 10–14 October 2021. [Google Scholar]
- Kumar, S.; Williams, B.S.; Qin, Q.; Lee, I.W.M.; Hu, Q.; Reno, J.L. Single-Mode surface-emitting terahertz quantum cascade lasers operating up to similar to 150 K. In Proceedings of the Conference on Lasers and Electro-Optics/Quantum Electronics and La-ser Science Conference, Baltimore, MD, USA, 6–11 May 2007. [Google Scholar]
- Sigler, C.; Kirch, J.D.; Earles, T.; Mawst, L.J.; Yu, Z.; Botez, D. Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes. Appl. Phys. Lett. 2014, 104, 131108. [Google Scholar] [CrossRef]
- Hai, Y.; Ma, X.; Zou, Y.; Wang, H.; Fan, J.; Chen, Q.; Bai, Y.; Dong, J. Research of asymmetric waveguide on surface emitting distributed feedback semiconductor lasers. Opt. Commun. 2018, 423, 12–16. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhao, F.Y.; Liu, J.Q.; Liu, F.Q.; Zhang, J.C.; Zhuo, N.; Zhai, S.Q.; Wang, L.J.; Liu, S.M.; Wang, Z.G. Single-Mode Surface Emitting Terahertz Quantum Cascade Lasers. J. Nanosci. Nanotechnol. 2018, 18, 7554–7556. [Google Scholar] [CrossRef]
- Knoetig, H.; Hinkov, B.; Weih, R.; Hoefling, S.; Koeth, J.; Strasser, G. Continuous-wave operation of vertically emitting ring interband cascade lasers at room temperature. Appl. Phys. Lett. 2020, 116, 131101. [Google Scholar] [CrossRef]
- Tian, K.; Zou, Y.; Guan, M.; Shi, L.; Zhang, H.; Xu, Y.; Fan, J.; Tang, H.; Ma, X. High directionality of surface radiation for surface emitting distributed feedback lasers. Opt. Express 2022, 30, 14243–14257. [Google Scholar] [CrossRef]
- Dickey, F.M.; Hand, C.F.; Beyer, R.A. Novel 300-watt single-emitter laser diodes for laser initiation applications. In Proceedings of the Optical Technologies for Arming, Safing, Fuzing, and Firing VI, San Diego, CA, USA, 2 August 2010. [Google Scholar]
- Ao, Y.; Wang, J.; Liu, D.; Zhang, M. Surface-emitting distributed feedback laser based on high-order gratings. Appl. Opt. 2019, 58, 5443–5449. [Google Scholar] [CrossRef]
- Li, Z.; Moon, J.; Gharajeh, A.; Haroldson, R.; Hawkins, R.; Hu, W.; Zakhidov, A.; Gu, Q. Room-Temperature continuous-wave operation of organometal halide perovskite lasers. ACS Nano 2018, 12, 10968–10976. [Google Scholar] [CrossRef]
- Sandanayaka, A.S.D.; Matsushima, T.; Bencheikh, F.; Yoshida, K.; Inoue, M.; Fujihara, T.; Goushi, K.; Ribierre, J.C.; Adachi, C. Toward continuous-wave operation of organic semiconductor lasers. Sci. Adv. 2017, 3, 1602570. [Google Scholar] [CrossRef]
- Bonal, V.; Quintana, J.A.; Villalvilla, J.M.; Boj, P.G.; Diaz-Garcia, M.A. Controlling the emission properties of solution-processed organic distributed feedback lasers through resonator design. Sci. Rep. 2019, 9, 11159. [Google Scholar] [CrossRef]
- Bonal, V.; Villalvilla, J.M.; Quintana, J.A.; Boj, P.G.; Lin, N.; Watanabe, S.; Kazlauskas, K.; Adomeniene, O.; Jursenas, S.; Tsuji, H.; et al. Blue and deep-blue-emitting organic lasers with top-layer distributed feedback resonators. Adv. Opt. Mater. 2020, 8, 2001153. [Google Scholar] [CrossRef]
- Imada, M.; Noda, S.; Chutinan, A.; Tokuda, T.; Murata, M.; Sasaki, G. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Appl. Phys. Lett. 1999, 75, 316–318. [Google Scholar] [CrossRef]
- Meier, M.; Mekis, A.; Dodabalapur, A.; Timko, A.; Slusher, R.E.; Joannopoulos, J.D.; Nalamasu, O. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 1999, 74, 7–9. [Google Scholar] [CrossRef]
- Yoshida, M.; De Zoysa, M.; Ishizaki, K.; Tanaka, Y.; Hatsuda, R.; Kawasaki, M.; Song, B.-S.; Noda, S. 10 W high-power and high-beam-quality pulsed operation of double-hole photonic-crystal surface-emitting lasers. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Yoshida, M.; De Zoysa, M.; Ishizaki, K.; Tanaka, Y.; Kawasaki, M.; Hatsuda, R.; Song, B.; Gelleta, J.; Noda, S. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 2019, 18, 121–128. [Google Scholar] [CrossRef] [PubMed]
- De Zoysa, M.; Yoshida, M.; Song, B.; Ishizaki, K.; Inoue, T.; Katsuno, S.; Izumi, K.; Tanaka, Y.; Hatsuda, R.; Gelleta, J.; et al. Thermal management for CW operation of large-area double-lattice photonic-crystal lasers. J. Opt. Soc. Am. B 2020, 37, 3882–3887. [Google Scholar] [CrossRef]
- Bravo-Abad, J.; Joannopoulos, J.D.; Soljacic, M. Enabling single-mode behavior over large areas with photonic Dirac cones. Proc. Natl. Acad. Sci. USA 2012, 109, 9761–9765. [Google Scholar] [CrossRef] [PubMed]
- Contractor, R.; Noh, W.; Redjem, W.; Qarony, W.; Martin, E.; Dhuey, S.; Schwartzberg, A.; Kante, B. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature 2022, 608, 692–698. [Google Scholar] [CrossRef]
- Gao, X.; Yang, L.; Lin, H.; Zhang, L.; Li, J.; Bo, F.; Wang, Z.; Lu, L. Dirac-vortex topological cavities. Nat. Nanotechnol. 2020, 15, 1012–1018. [Google Scholar] [CrossRef]
- Yang, L.; Li, G.; Gao, X.; Lu, L. Topological-cavity surface-emitting laser. Nat. Photonics 2022, 16, 279–283. [Google Scholar] [CrossRef]
- Hamao, N.; Sugimoto, M.; Takado, N.; Tashiro, Y.; Iwata, H.; Yuasa, T.; Asakawa, K. Surface-emitting GaAs/AlGaAs lasers with dry-etched 45° total reflection mirrors. Appl. Phys. Lett. 1989, 54, 2389–2391. [Google Scholar] [CrossRef]
- Ou, S.S.; Yang, J.J.; Jansen, M.; Sergant, M.; Mawst, L.J.; Wilcox, J.Z. High performance surface-emitting lasers with 45° intracavity micromirrors. Appl. Phys. Lett. 1991, 58, 16–18. [Google Scholar] [CrossRef]
- Shinoda, K.; Adachi, K.; Lee, Y.; Kitatani, T.; Fukamachi, T.; Yamashita, H.; Takemoto, T.; Yuki, F.; Sugawara, T.; Tanaka, S.; et al. Monolithically Lens-Integrated photonic device arrays for compact optical transceivers. Jpn. J. Appl. Phys. 2013, 52, 022701. [Google Scholar] [CrossRef]
- Suzuki, T.; Adachi, K.; Okumura, T.; Arimoto, H.; Tanaka, S. A Light Source Using 1.3 μm Lens-Integrated Surface-Emitting Laser for Silicon Platforms. IEEE Photonics Technol. Lett. 2014, 26, 1089–1091. [Google Scholar] [CrossRef]
- Adachi, K.; Takei, A.; Suzuki, T.; Tanaka, S.; Nakanishi, A.; Naoe, K. Large-Tolerant Direct Coupling to an SMF Array with a Lens-Integrated Surface-Emitting Laser. IEEE Photonics Technol. Lett. 2015, 27, 939–942. [Google Scholar] [CrossRef]
- Suzuki, T.; Adachi, K.; Takei, A.; Tamura, K.R.; Nakanishi, A.; Naoe, K.; Ohtoshi, T.; Nakahara, K.; Tanaka, S.; Uomi, K. Cost-Effective optical sub-assembly using lens-integrated surface-emitting laser. J. Light. Technol. 2016, 34, 358–364. [Google Scholar] [CrossRef]
Year | Institution | Band | Output Power | Slope Efficiency | Divergence Angle | Structure | Ref |
---|---|---|---|---|---|---|---|
2005 | University of Wisconsin | 980 nm | 20 units form an array: 1.6 W (continuous wave (C.W.)) | Linear second-order grating | [29] | ||
2006 | BinOptics Corporation | 1.3 μm | 30 mW | ~0.3 W/A | 15° × 36° | mirror-type HCSEL | [28] |
2012 | Alfalight Company | 97x nm | 68 W (C.W.) | 0.8 W/A | <8° | curved second-order grating | [30] |
2014 | Kyoto University | 941 nm | 1.5 W (C.W.) | 0.66 W/A | <3° | Photonic crystals | [31] |
2016 | Taiwan National Chiao Tung University | 1.3 μm | 2 mW | 1° × 8~9° | Linear second-order grating | [32] | |
2016 | Institute of Semiconductors of the Chinese Academy of Sciences | 7 μm | 2.29 W | 500 mW/A | 2.9° × 0.36° | Linear second-order grating | [33] |
2017 | Institute of Semiconductors of the Chinese Academy of Sciences | 4.97 μm | 248 mW | 0.14° × 16° | Linear second-order grating | [34] | |
2018 | Lehigh University | 3.4 THz | 170 mW | 993 mW/A | 5° × 25° | Linear high-order grating | [35] |
2018 | Kyoto University | 940 nm | 7 W (C.W.) | 0.48 W/A | <0.4° | Double lattice | [36] |
2019 | Changchun Institute of Optics, Fine Mechanics and Physics | 1.3 μm | 13.3 mW (C.W.) | 40.9 mW/A | Quantum-dot Photonic-crystals | [37] | |
2019 | Northwestern University | 4.9 μm | 6.7 W (peak power) | mirror-type HCSEL | [38] | ||
2021 | Changchun University of Science and Technology | 976 nm | 84 mW | 2.6° × 6.1° | Linear second-order grating | [39] | |
2021 | Kyoto University | 940 nm | 29 W (C.W.) | ~0.66 W/A | <0.4° | Double lattice | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Song, Y.; Chen, Y.; Qin, L.; Liang, L.; Niu, S.; Wang, Y.; Jia, P.; Qiu, C.; Lei, Y.; et al. Research Progress of Horizontal Cavity Surface-Emitting Laser. Sensors 2023, 23, 5021. https://doi.org/10.3390/s23115021
Liu J, Song Y, Chen Y, Qin L, Liang L, Niu S, Wang Y, Jia P, Qiu C, Lei Y, et al. Research Progress of Horizontal Cavity Surface-Emitting Laser. Sensors. 2023; 23(11):5021. https://doi.org/10.3390/s23115021
Chicago/Turabian StyleLiu, Jishun, Yue Song, Yongyi Chen, Li Qin, Lei Liang, Shen Niu, Ye Wang, Peng Jia, Cheng Qiu, Yuxin Lei, and et al. 2023. "Research Progress of Horizontal Cavity Surface-Emitting Laser" Sensors 23, no. 11: 5021. https://doi.org/10.3390/s23115021
APA StyleLiu, J., Song, Y., Chen, Y., Qin, L., Liang, L., Niu, S., Wang, Y., Jia, P., Qiu, C., Lei, Y., Wang, Y., Ning, Y., & Wang, L. (2023). Research Progress of Horizontal Cavity Surface-Emitting Laser. Sensors, 23(11), 5021. https://doi.org/10.3390/s23115021