Performance Tiers within a Competitive Age Group of Young Swimmers Are Characterized by Different Kinetic and Kinematic Behaviors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometrics
2.3. Stroke Kinetics
2.4. Performance and Stroke Kinematics
2.5. Statistical Analysis
3. Results
3.1. Anthropometrics
3.2. Stroke Kinetics
3.3. Performance and Stroke Kinematics
4. Discussion
4.1. Anthropometrics
4.2. Stroke Kinetics
4.3. Performance and Stroke Kinematics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, M.J.; Marinho, D.A.; Bragada, J.A.; Silva, A.J.; Barbosa, T.M. Stability of elite freestyle performance from childhood to adulthood. J. Sports Sci. 2011, 29, 1183–1189. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Costa, M.J.; Marinho, D.A. Proposal of a deterministic model to explain swimming performance. Int. J. Swim. Kinet. 2013, 2, 1–54. [Google Scholar]
- Santos, C.C.; Marinho, D.A.; Neiva, H.P.; Costa, M.J. Propulsive forces in human competitive swimming: A systematic review on direct assessment methods. Sports Biomech. 2021; online ahead of print. [Google Scholar] [CrossRef]
- Cohen, R.C.Z.; Cleary, P.W.; Mason, B.R.; Pease, D.L. Forces during front crawl swimming at different stroke rates. Sports Eng. 2017, 21, 63–73. [Google Scholar] [CrossRef]
- Strzała, M.; Stanula, A.; Krężałek, P.; Sokołowski, K.; Wądrzyk, Ł.; Maciejczyk, M.; Karpiński, J.; Rejdych, W.; Wilk, R.; Sadowski, W. Correlations between Crawl Kinematics and Speed with Morphologic, Functional, and Anaerobic Parameters in Competitive Swimmers. Int. J. Environ. Res. Public Health 2022, 19, 4595. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Nakashima, M.; Sengoku, Y.; Tsunokawa, T.; Koga, D.; Narita, K.; Kudo, S.; Sanders, R.; Gonjo, T. How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives. Sports Biomech. 2021; online ahead of print. [Google Scholar] [CrossRef]
- Samson, M.; Monnet, T.; Bernard, A.; Lacouture, P.; David, L. Analysis of a ’swimmer’s hand and forearm in impulsive start from rest using computational fluid dynamics in unsteady flow conditions. J. Biomech. 2018, 67, 157–165. [Google Scholar] [CrossRef]
- Koga, D.; Tsunokawa, T.; Sengoku, Y.; Homoto, K.; Nakazono, Y.; Takagi, H. Relationship Between Hand Kinematics, Hand Hydrodynamic Pressure Distribution and Hand Propulsive Force in Sprint Front Crawl Swimming. Front. Sports Act. Living 2022, 4, 786459. [Google Scholar] [CrossRef] [PubMed]
- Tsunokawa, T.; Mankyu, H.; Takagi, H.; Ogita, F. The effect of using paddles on hand propulsive forces and Froude efficiency in arm-stroke-only front-crawl swimming at various velocities. Hum. Mov. Sci. 2019, 64, 378–388. [Google Scholar] [CrossRef]
- Santos, C.C.; Marinho, D.A.; Costa, M.J. Reliability of using a pressure sensor system to measure in-water force in young competitive swimmers. Front. Bioeng. Biotechnol. 2022, 10, 903753. [Google Scholar] [CrossRef]
- Santos, C.C.; Marinho, D.A.; Costa, M.J. The mechanical and efficiency constraints when swimming front crawl with the Aquanex System. J. Hum. Kinet. 2022, 84, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Bartolomeu, R.F.; Rodrigues, P.; Santos, C.C.; Costa, M.J.; Barbosa, T.M. Is There Any Effect of Symmetry on Velocity of the Four Swimming Strokes? Symmetry 2022, 14, 12. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Myer, G.D.; De Ste Croix, M.B. Chronological age vs. biological maturation: Implications for exercise programming in youth. J. Strength Cond. 2014, 28, 1454–1464. [Google Scholar] [CrossRef]
- Alves, M.; Carvalho, D.D.; Fernandes, R.J.; Vilas-Boas, J.P. How Anthropometrics of Young and Adolescent Swimmers Influence Stroking Parameters and Performance? A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 2543. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.E.; Jesus, S.; Lopes, V.; Garrido, N.; Silva, A.; Marinho, D.; Barbosa, T.M. Linking selected kinematic, anthropometric and hydrodynamic variables to young swimmer performance. Pediatr. Exerc. Sci. 2012, 24, 649–664. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.; Silva, A.; Sampaio, A.; Vilas-Boas, J.P.; Fernandes, R.J. Front Crawl Sprint Performance: A Cluster Analysis of Biomechanics, Energetics, Coordinative, and Anthropometric Determinants in Young Swimmers. Motor. Control 2016, 20, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.M.; Bartolomeu, R.; Morais, J.E.; Costa, M.J. Skillful Swimming in Age-Groups Is Determined by Anthropometrics, Biomechanics and Energetics. Front. Physiol. 2019, 10, 73. [Google Scholar] [CrossRef]
- Morais, J.E.; Silva, A.J.; Marinho, D.A.; Seifert, L.; Barbosa, T.M. Cluster stability as a new method to assess changes in performance and its determinant factors over a season in young swimmers. Int. J. Sports Physiol. Perform. 2015, 10, 261–268. [Google Scholar] [CrossRef]
- Morais, J.E.; Barbosa, T.M.; Neiva, H.P.; Marques, M.C.; Marinho, D.A. Young ’Swimmers’ Classification Based on Performance and Biomechanical Determinants: Determining Similarities Through Cluster Analysis. Motor. Control 2022, 26, 396–411. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics: Champaign, IL, USA, 1988. [Google Scholar]
- Moreira, M.F.; Morais, J.E.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M.; Costa, M.J. Growth influences biomechanical profile of talented swimmers during the summer break. Sports Biomech. 2014, 13, 62–74. [Google Scholar] [CrossRef]
- Ferguson, C.J. An Effect Size Primer: A Guide for Clinicians and Researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: Abingdon, UK, 1988; p. 40. [Google Scholar]
- Bond, D.; Goodson, L.; Oxford, S.; Nevill, A.; Duncan, M. The Association between Anthropometric Variables, Functional Movement Screen Scores and 100 m Freestyle Swimming Performance in Youth Swimmers. Sports 2015, 3, 1–11. [Google Scholar] [CrossRef]
- Saavedra, J.M.; Escalante, Y.; Rodríguez, F. A multivariate analysis of performance in young swimmers. Pediatr. Exerc. Sci. 2010, 22, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Santos, C.C.; Costa, M.J.; Marinho, D.A. The Effects of 6-Week Training Cessation on Anthropometrics, in-Water Force, Performance, and Kinematics of Young Competitive Swimmers: A Maturity Development. Int. J. Sports Physiol. 2023; ahead of print. [Google Scholar] [CrossRef]
- Morais, J.E.; Forte, P.; Silva, A.J.; Barbosa, T.M.; Marinho, D.A. Data Modeling for Inter- and Intra-Individual Stability of Young ’Swimmers’ Performance: A Longitudinal Cluster Analysis. Res. Q. Exerc. Sport 2021, 92, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Blanksby, B.A.; Bloomfield, J.; Elliot, B.C.; Ackland, T.R.; Morton, A.R. The anatomical and physiological characteristics of pre-adolescent males and females. Aust. Paediatr. J. 1986, 22, 177–180. [Google Scholar] [CrossRef]
- Kudo, S.; Mastuda, Y.; Sakurai, Y.; Ichikawa, H.; Ikuta, Y. Differences in stroke technique to exert hand propulsion between advanced and intermediate swimmers. ISBS Proc. Arch. 2016, 34, 707–710. [Google Scholar]
- Komar, J.; Leprêtre, P.M.; Alberty, M.; Vantorre, J.; Fernandes, R.J.; Hellard, P.; Chollet, D.; Seifert, L. Effect of increasing energy cost on arm coordination in elite sprint swimmers. Hum. Mov. Sci. 2012, 31, 620–629. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Fernandes, R.J.; Keskinen, K.L.; Vilas-Boas, J.P. The influence of stroke mechanics into energy cost of elite swimmers. Eur. J. Appl. Physiol. 2008, 103, 139–149. [Google Scholar] [CrossRef]
- Seifert, L.; Chollet, D.; Rouard, A. Swimming constraints and arm coordination. Hum. Mov. Sci. 2007, 26, 68–86. [Google Scholar] [CrossRef]
Dependent Variable | Tiers | One-Way ANOVA | Post Hoc | ||||||
---|---|---|---|---|---|---|---|---|---|
T1 M ± SD (95CI) | T2 M ± SD (95CI) | T3 M ± SD (95CI) | F-Value | p-Value | ES | T1–T2 p (d) | T2–T3 p (d) | T1–T3 p (d) | |
Body mass (kg) | 46.3 ± 9.0 (41.3–51.2) | 48.4 ± 8.9 (43.7–53.2) | 51.1 ± 8.0 (46.8–55.4) | 1.233 | 0.301 | 0.05 | 0.759 (0.24) | 0.661 (0.33) | 0.271 (0.58) |
Stature (cm) | 152.7 ± 5.9 (149.4–156.0) | 157.1 ± 6.1 (153.9–160.4) | 161.5 ± 7.5 (157.5–165.6) | 6.933 | 0.002 | 0.25 | 0.160 (0.75) | 0.155 (0.66) | 0.002 (1.35) |
Arm span (cm) | 152.1 ± 7.3 (148.1–156.2) | 157.2 ± 6.9 (153.5–160.9) | 163.2 ± 9.1 (158.4–168.1) | 7.788 | 0.001 | 0.26 | 0.183 (0.74) | 0.086 (0.77) | <0.001 (1.39) |
HSA D (cm2) | 94.8 ± 8.1 (90.6–98.9) | 104.5 ± 11.2 (98.9–110.1) | 111.7 ± 9.9 (106.4–116.9) | 12.175 | <0.001 | 0.34 | 0.015 (1.02) | 0.100 (0.70) | <0.001 (1.93) |
HSA ND (cm2) | 94.8 ± 8.5 (90.4–99.2) | 104.9 ± 11.2 (99.4–110.5) | 112.0 ± 10.2 (106.6–117.5) | 12.190 | <0.001 | 0.34 | 0.013 (1.05) | 0.112 (0.68) | <0.001 (1.88) |
Dependent Variable | Tiers | One-Way ANOVA | Post-Hoc | ||||||
---|---|---|---|---|---|---|---|---|---|
T1 M ± SD (95CI) | T2 M ± SD (95CI) | T3 M ± SD (95CI) | F-Value | p-Value | ES | T1–T2 p (d) | T2–T3 p (d) | T1–T3 p (d) | |
FPEAK D (N) | 44.5 ± 8.6 (40.2–48.7) | 56.3 ± 10.9 (50.9–61.7) | 65.1 ± 14.1 (57.8–72.3) | 14.548 | <0.001 | 0.37 | 0.008 (1.24) | 0.069 (0.72) | <0.001 (1.83) |
FPEAK ND (N) | 41.3 ± 11.7 (35.4–47.1) | 54.1 ± 9.8 (49.2–58.9) | 63.9 ± 13.6 (56.9–70.9) | 16.295 | <0.001 | 0.40 | 0.006 (1.22) | 0.044 (0.86) | <0.001 (1.84) |
Dependent Variable | Tiers | One-Way ANOVA | Post Hoc | ||||||
---|---|---|---|---|---|---|---|---|---|
T1 M ± SD (95CI) | T2 M ± SD (95CI) | T3 M ± SD (95CI) | F-Value | p-Value | ES | T1–T2 p (d) | T2–T3 p (d) | T1–T3 p (d) | |
s25 (m·s−1) | 1.32 ± 0.08 (1.28–1.36) | 1.47 ± 0.05 (1.45–1.49) | 1.58 ± 0.06 (1.55–1.61) | 70.864 | <0.001 | 0.74 | <0.001 (2.31) | <0.001 (2.06) | <0.001 (3.77) |
SR (Hz) | 0.76 ± 0.07 (0.72–0.79) | 0.77 ± 0.07 (0.73–0.80) | 0.83 ± 0.07 (0.80–0.86) | 5.480 | 0.007 | 0.18 | 0.870 (0.15) | 0.032 (0.88) | 0.009 (1.03) |
SL (m) | 1.75 ± 0.14 (1.68–1.82) | 1.93 ± 0.18 (1.84–2.01) | 1.91 ± 0.13 (1.84–1.98) | 7.112 | 0.002 | 0.22 | 0.004 (1.15) | 0.968 (0.13) | 0.009 (1.22) |
SL/Arm span | 1.16 ± 0.09 (1.10–1.21) | 1.21 ± 0.11 (1.15–1.28) | 1.17 ± 0.08 (1.13–1.22) | 1.334 | 0.274 | 0.06 | 0.287 (0.51) | 0.438 (0.43) | 0.940 (0.12) |
SI (m2·s−1) | 2.31 ± 0.27 (2.18–2.45) | 2.83 ± 0.28 (2.69–2.97) | 3.02 ± 0.25 (2.89–3.15) | 32.764 | <0.001 | 0.57 | <0.001 (1.95) | 0.102 (0.74) | <0.001 (2.81) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.C.; Garrido, N.D.; Cuenca-Fernández, F.; Marinho, D.A.; Costa, M.J. Performance Tiers within a Competitive Age Group of Young Swimmers Are Characterized by Different Kinetic and Kinematic Behaviors. Sensors 2023, 23, 5113. https://doi.org/10.3390/s23115113
Santos CC, Garrido ND, Cuenca-Fernández F, Marinho DA, Costa MJ. Performance Tiers within a Competitive Age Group of Young Swimmers Are Characterized by Different Kinetic and Kinematic Behaviors. Sensors. 2023; 23(11):5113. https://doi.org/10.3390/s23115113
Chicago/Turabian StyleSantos, Catarina C., Nuno D. Garrido, Francisco Cuenca-Fernández, Daniel A. Marinho, and Mário J. Costa. 2023. "Performance Tiers within a Competitive Age Group of Young Swimmers Are Characterized by Different Kinetic and Kinematic Behaviors" Sensors 23, no. 11: 5113. https://doi.org/10.3390/s23115113
APA StyleSantos, C. C., Garrido, N. D., Cuenca-Fernández, F., Marinho, D. A., & Costa, M. J. (2023). Performance Tiers within a Competitive Age Group of Young Swimmers Are Characterized by Different Kinetic and Kinematic Behaviors. Sensors, 23(11), 5113. https://doi.org/10.3390/s23115113