A Quantitative Evaluation of the Performance of the Low-Cost AudioMoth Acoustic Recording Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acoustic Performance Test
2.2. Battery Life Test
3. Results
3.1. Acoustic Performance Tests
3.1.1. Frequency Response Variation
3.1.2. Effect of Gain on Frequency Response Variation
3.1.3. On-Axis Frequency Response
3.1.4. Polar Response
3.1.5. Impact of Trees on Frequency Response
3.2. Battery Life Tests
3.2.1. Effect of Sample Rate
3.2.2. Effect of Gain
3.2.3. Effect of Battery Type and Temperature
4. Discussion
4.1. Acoustic Performance Tests
4.2. Battery Life Tests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- AudioMoth version 1.1.0 with 1.3.0 firmware (LABmaker, Berlin, Germany)
- 64 GB SanDisk Ultra microSDXC UHS-I Card (SanDisk, Milpitas, CA, USA)
- dbx RTA-M Reference Microphone (HARMAN International, Stamford, CT, USA)
- Scarlett 2i2 Audio Interface (Focusrite, High Wycombe, United Kingdom)
- Macbook Pro 2013 with Logic Pro X and Audacity 2.2.2 (Apple, Cupertino, CA, USA)
- Mackie SRM-450 Loudspeaker (Mackie, Woodinville, WA, USA)
- AudioMoth version 1.1.0 with 1.5.0 firmware (LABmaker, Berlin, Germany)
- 64 GB SanDisk Ultra microSDXC UHS-I Card (SanDisk, Milpitas, CA, USA)
- Procell PC1500 Alkaline AA Batteries (Duracell Inc., Chicago, IL, USA)
- Energizer Ultimate Lithium AA Batteries (Energizer Holdings, Inc., St. Louis, MO, USA)
- Frigidaire Top Freezer Refrigerator Model: FFET1022UV (Frigidaire, Charlotte, NC, USA)
References
- Sugai, L.S.M.; Silva, T.S.F.; Ribeiro, J.W.; Llusia, D. Terrestrial Passive Acoustic Monitoring: Review and Perspectives. BioScience 2019, 69, 15–25. [Google Scholar] [CrossRef]
- Rhinehart, T.A.; Chronister, L.M.; Devlin, T.; Kitzes, J. Acoustic Localization of Terrestrial Wildlife: Current Practices and Future Opportunities. Ecol. Evol. 2020, 10, 6794–6818. [Google Scholar] [CrossRef] [PubMed]
- Laiolo, P. The Emerging Significance of Bioacoustics in Animal Species Conservation. Biol. Conserv. 2010, 143, 1635–1645. [Google Scholar] [CrossRef]
- Marques, T.A.; Thomas, L.; Martin, S.W.; Mellinger, D.K.; Ward, J.A.; Moretti, D.J.; Harris, D.; Tyack, P.L. Estimating Animal Population Density Using Passive Acoustics. Biol. Rev. 2013, 88, 287–309. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.; Campos-Cerqueira, M.; Jumail, A.; Yusni, A.S.A.; Salgado-Lynn, M.; Fornace, K. Applications and Advances in Acoustic Monitoring for Infectious Disease Epidemiology. Trends Parasitol. 2023, 39, 386–399. [Google Scholar] [CrossRef] [PubMed]
- Titley Scientific Acoustic Monitoring Products. Available online: https://www.titley-scientific.com/us/products/anabat-systems (accessed on 24 April 2023).
- Wildlife Acoustics Recorders/Software Products. Available online: https://www.wildlifeacoustics.com/products (accessed on 24 April 2023).
- Sethi, S.S.; Ewers, R.M.; Jones, N.S.; Orme, C.D.L.; Picinali, L. Robust, Real-time and Autonomous Monitoring of Ecosystems with an Open, Low-cost, Networked Device. Methods Ecol. Evol. 2018, 9, 2383–2387. [Google Scholar] [CrossRef]
- Caldas-Morgan, M.; Alvarez-Rosario, A.; Rodrigues Padovese, L. An Autonomous Underwater Recorder Based on a Single Board Computer. PLoS ONE 2015, 10, e0130297. [Google Scholar] [CrossRef] [PubMed]
- Whytock, R.C.; Christie, J. Solo: An Open Source, Customizable and Inexpensive Audio Recorder for Bioacoustic Research. Methods Ecol. Evol. 2017, 8, 308–312. [Google Scholar] [CrossRef]
- Hill, A.P.; Prince, P.; Piña Covarrubias, E.; Doncaster, C.P.; Snaddon, J.L.; Rogers, A. AudioMoth: Evaluation of a Smart Open Acoustic Device for Monitoring Biodiversity and the Environment. Methods Ecol. Evol. 2018, 9, 1199–1211. [Google Scholar] [CrossRef]
- Roedel, K. Reno Startup Helps Fund Global Production of Acoustic Recording Device. Northern Nevada Business Weekly. 2021. Available online: https://www.nnbw.com/news/2021/sep/21/reno-startup-helps-fund-global-production-acoustic (accessed on 24 April 2023).
- GroupGets AudioMoth by Open Acoustic Devices. Available online: https://groupgets.com/manufacturers/open-acoustic-devices/products/audiomoth (accessed on 24 April 2023).
- Knowles Product Data Sheet—SPM0408LE5H-TB Amplified Zero-Height SiSonic Microphone with Enhanced RF Protection. Available online: https://media.digikey.com/pdf/Data%20Sheets/Knowles%20Acoustics%20PDFs/SPM0408LE5H-TB.pdf (accessed on 26 April 2023).
- Hill, A.P.; Prince, P.; Snaddon, J.L.; Doncaster, C.P.; Rogers, A. AudioMoth: A Low-Cost Acoustic Device for Monitoring Biodiversity and the Environment. HardwareX 2019, 6, e00073. [Google Scholar] [CrossRef]
- Barber-Meyer, S.M.; Palacios, V.; Marti-Domken, B.; Schmidt, L.J. Testing a New Passive Acoustic Recording Unit to Monitor Wolves. Wildl. Soc. Bull. 2020, 44, 590–598. [Google Scholar] [CrossRef]
- Manzano-Rubio, R.; Bota, G.; Brotons, L.; Soto-Largo, E.; Pérez-Granados, C. Low-Cost Open-Source Recorders and Ready-to-Use Machine Learning Approaches Provide Effective Monitoring of Threatened Species. Ecol. Inform. 2022, 72, 101910. [Google Scholar] [CrossRef]
- Pérez-Granados, C.; Traba, J. Estimating Bird Density Using Passive Acoustic Monitoring: A Review of Methods and Suggestions for Further Research. Ibis 2021, 163, 765–783. [Google Scholar] [CrossRef]
- Darras, K.; Batáry, P.; Furnas, B.; Celis-Murillo, A.; Van Wilgenburg, S.L.; Mulyani, Y.A.; Tscharntke, T. Comparing the Sampling Performance of Sound Recorders versus Point Counts in Bird Surveys: A Meta-Analysis. J. Appl. Ecol. 2018, 55, 2575–2586. [Google Scholar] [CrossRef]
- GitHub: KitzesLab—A Quantitative Report of Audio Recording Quality for the AudioMoth. Available online: https://github.com/kitzeslab/audiomoth-performance (accessed on 12 April 2023).
- GitHub: KitzesLab—ARU Battery Longevity Report. Available online: https://github.com/kitzeslab/ARU_battery_longevity (accessed on 12 April 2023).
- Rayburn, R.A.; Eargle, J. Eargle’s Microphone Book: From Mono to Stereo to Surround: A Guide to Microphone Design and Application, 3rd ed.; Focal Press/Elsevier: Waltham, MA, USA, 2012; ISBN 978-0-240-82075-0. [Google Scholar]
- Decibels. Available online: https://www.dsprelated.com/freebooks/mdft/Decibels.html (accessed on 12 April 2023).
- Bat Echolocation. Available online: https://dnr.maryland.gov/wildlife/Pages/plants_wildlife/bats/batelocu.aspx (accessed on 12 April 2023).
- Dooling, R.J.; Lohr, B.; Dent, M.L. Hearing in Birds and Reptiles. In Comparative Hearing: Birds and Reptiles; Dooling, R.J., Fay, R.R., Popper, A.N., Eds.; Springer Handbook of Auditory Research; Springer: New York, NY, USA, 2000; Volume 13, pp. 308–359. [Google Scholar] [CrossRef]
- Heffner, H.E.; Heffner, R.S. Hearing. In Comparative Psychology, 1st ed.; Greenberg, G., Haraway, M.M., Eds.; Routledge: New York, NY, USA, 1998; pp. 290–303. [Google Scholar] [CrossRef]
- Sarria-S, F.A.; Morris, G.K.; Windmill, J.F.C.; Jackson, J.; Montealegre-Z, F. Shrinking Wings for Ultrasonic Pitch Production: Hyperintense Ultra-Short-Wavelength Calls in a New Genus of Neotropical Katydids (Orthoptera: Tettigoniidae). PLoS ONE 2014, 9, e98708. [Google Scholar] [CrossRef]
- Long, M. Sound Transmission Loss. In Architectural Acoustics; Elsevier: Amsterdam, The Netherlands, 2014; pp. 345–382. ISBN 978-0-12-398258-2. [Google Scholar]
- Turgeon, P.J.; Van Wilgenburg, S.L.; Drake, K.L. Microphone Variability and Degradation: Implications for Monitoring Programs Employing Autonomous Recording Units. Avian Conserv. Ecol. 2017, 12, 9. [Google Scholar] [CrossRef]
Sample Rate (kHz) | Hours Recorded | Configuration App Estimate (h) | ||
---|---|---|---|---|
Mean | Min | Max | ||
8 | 249 | 247 | 251 | 229 |
16 | 224 | 224 | 225 | 210 |
32 | 189 | 187 | 191 | 187 |
48 | 161 | 160 | 163 | 168 |
96 1 | 91 | 90 | 91 | 133 |
192 1 | 60 | 59 | 61 | 87 |
250 1 | 47 | 47 | 47 | 80 |
384 1 | 43 | 43 | 43 | 55 |
Temperature | Procell | Lithium | ||||
---|---|---|---|---|---|---|
Avg | Min | Max | Avg | Min | Max | |
Room (20.5 °C) | 189 | 187 | 191 | 234 | 228 | 239 |
Fridge (3.4 °C) | 183 | 181 | 185 | 241 | 239 | 244 |
Freezer (−16.1 °C) | 103 | 99 | 105 | 238 | 236 | 241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lapp, S.; Stahlman, N.; Kitzes, J. A Quantitative Evaluation of the Performance of the Low-Cost AudioMoth Acoustic Recording Unit. Sensors 2023, 23, 5254. https://doi.org/10.3390/s23115254
Lapp S, Stahlman N, Kitzes J. A Quantitative Evaluation of the Performance of the Low-Cost AudioMoth Acoustic Recording Unit. Sensors. 2023; 23(11):5254. https://doi.org/10.3390/s23115254
Chicago/Turabian StyleLapp, Sam, Nickolus Stahlman, and Justin Kitzes. 2023. "A Quantitative Evaluation of the Performance of the Low-Cost AudioMoth Acoustic Recording Unit" Sensors 23, no. 11: 5254. https://doi.org/10.3390/s23115254
APA StyleLapp, S., Stahlman, N., & Kitzes, J. (2023). A Quantitative Evaluation of the Performance of the Low-Cost AudioMoth Acoustic Recording Unit. Sensors, 23(11), 5254. https://doi.org/10.3390/s23115254