Adversarial and Random Transformations for Robust Domain Adaptation and Generalization
Abstract
:1. Introduction
- (1)
- We build a unified framework for domain adaptation and domain generalization based on data augmentation and consistency training.
- (2)
- We propose an end-to-end differentiable adversarial data-augmentation strategy with spatial transformer networks to improve accuracy and robustness.
- (3)
- We show that our proposed methods outperform state-of-the-art DA and DG methods on multiple object recognition datasets.
- (4)
- We show that our model is robust to common corruptions and obtained promising results on the CIFAR-10-C robustness benchmark.
2. Related Work
2.1. Domain Adaptation
2.2. Domain Generalization
2.3. Data Augmentation
3. The Proposed Approach
3.1. Problem Statement
3.2. Random Image Transformation with Consistency Training
- (1)
- Given an input image from either the source or target domain, we compute the output distribution with and a noisy version by applying random image transformation to ;
- (2)
- For domain adaptation, we jointly minimize the classification loss with labeled source-domain samples and a divergence metric between the two distributions with unlabeled source and target domain samples, where is a discrepancy measure between two distributions;
- (3)
- For domain generalization, the procedure is similar to (2) but without using any target domain samples.
3.3. Adversarial Spatial Transformer Networks
4. Experiments
4.1. Datasets
4.2. Experimental Setting
4.3. Experimental Results
4.3.1. Unsupervised Domain Adaptation
4.3.2. Domain Generalization
4.3.3. Robustness
4.4. Ablation Studies and Analysis
4.4.1. Ablation Study on Image Transformation Strategies
4.4.2. Ablation Study on the Hyperparameters Setting
4.4.3. Visualization of Learned Deep Features
4.4.4. Visualization of Adversarial Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, M.; Cao, Y.; Wang, J.; Jordan, M.I. Learning Transferable Features with Deep Adaptation Networks. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015. [Google Scholar]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-Adversarial Training of Neural Networks. In Domain Adaptation in Computer Vision Applications; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Hoffman, J.; Tzeng, E.; Park, T.; Zhu, J.Y.; Isola, P.; Saenko, K.; Efros, A.A.; Darrell, T. CyCADA: Cycle Consistent Adversarial Domain Adaptation. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018. [Google Scholar]
- Xu, J.; Xiao, L.; Lopez, A.M. Self-Supervised Domain Adaptation for Computer Vision Tasks. IEEE Access 2019, 7, 156694–156706. [Google Scholar] [CrossRef]
- Carlucci, F.M.; D’Innocente, A.; Bucci, S.; Caputo, B.; Tommasi, T. Domain Generalization by Solving Jigsaw Puzzles. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Ranaldi, L.; Pucci, G. Knowing Knowledge: Epistemological Study of Knowledge in Transformers. Appl. Sci. 2023, 13, 677. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Zhang, J.; Zhong, Z. Adversarial AutoAugment. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Volpi, R.; Murino, V. Addressing Model Vulnerability to Distributional Shifts Over Image Transformation Sets. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. Autoaugment: Learning augmentation policies from data. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Lim, S.; Kim, I.; Kim, T.; Kim, C.; Kim, S. Fast AutoAugment. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Cubuk, E.D.; Zoph, B.; Shlens, J.; Le, Q.V. RandAugment: Practical data augmentation with no separate search. In Proceedings of the Advances in Neural Information Processing Systems, virtual, 6–12 December 2020. [Google Scholar]
- Sajjadi, M.; Javanmardi, M.; Tasdizen, T. Regularization with Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Xie, Q.; Dai, Z.; Hovy, E.; Luong, T.; Le, Q. Unsupervised Data Augmentation for Consistency Training. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6–12 December 2020. [Google Scholar]
- Suzuki, T.; Sato, I. Adversarial Transformations for Semi-Supervised Learning. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Miyato, T.; Maeda, S.I.; Koyama, M.; Ishii, S. Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1979–1993. [Google Scholar] [CrossRef] [PubMed]
- Jaderberg, M.; Simonyan, K.; Zisserman, A.; Kavukcuoglu, K. Spatial transformer networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2017–2025. [Google Scholar]
- Hendrycks, D.; Dietterich, T. Benchmarking neural network robustness to common corruptions and perturbations. In Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep Domain Confusion: Maximizing for Domain Invariance. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Zhao, F.; Liu, W.; Wen, C. A New Method of Image Classification Based on Domain Adaptation. Sensors 2022, 22, 1315. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Feng, J.; Saenko, K. Return of frustratingly easy domain adaptation. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), Phoenix, AZ, USA, 12–17 February 2016. [Google Scholar]
- Sun, B.; Saenko, K. Deep CORAL: Correlation alignment for deep domain adaptation. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–10 and 15–16 October 2016. [Google Scholar]
- Sun, H.; Chen, X.; Wang, L.; Liang, D.; Liu, N.; Zhou, H. C2DAN: An Improved Deep Adaptation Network with Domain Confusion and Classifier Adaptation. Sensors 2020, 20, 3606. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial Discriminative Domain Adaptation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Fang, Y.; Xiao, Z.; Zhang, W. Multi-layer adversarial domain adaptation with feature joint distribution constraint. Neurocomputing 2021, 463, 298–308. [Google Scholar] [CrossRef]
- Zhu, J.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Shu, R.; Bui, H.H.; Narui, H.; Ermon, S. A DIRT-T Approach to Unsupervised Domain Adaptation. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Lee, S.; Kim, D.; Kim, N.; Jeong, S.G. Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Chen, M.; Zhao, S.; Liu, H.; Cai, D. Adversarial-Learned Loss for Domain Adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 3521–3528. [Google Scholar]
- Xiao, L.; Xu, J.; Zhao, D.; Wang, Z.; Wang, L.; Nie, Y.; Dai, B. Self-Supervised Domain Adaptation with Consistency Training. In Proceedings of the 25th International Conference on Pattern Recognition, Milan, Italy, 10–15 January 2021. [Google Scholar]
- Zhao, X.; Stanislawski, R.; Gardoni, P.; Sulowicz, M.; Glowacz, A.; Krolczyk, G.; Li, Z. Adaptive Contrastive Learning with Label Consistency for Source Data Free Unsupervised Domain Adaptation. Sensors 2022, 22, 4238. [Google Scholar] [CrossRef]
- Muandet, K.; Balduzzi, D.; Schölkopf, B. Domain Generalization via Invariant Feature Representation. In Proceedings of the 30th International Conference on International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 28, pp. 10–18. [Google Scholar]
- Ghifary, M.; Kleijn, W.B.; Zhang, M.; Balduzzi, D. Domain generalization for object recognition with multi-task autoencoders. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Li, H.; Pan, S.J.; Wang, S.; Kot, A.C. Domain generalization with adversarial feature learning. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Rahman, M.M.; Fookes, C.; Baktashmotlagh, M.; Sridharan, S. Correlation-aware Adversarial Domain Adaptation and Generalization. Pattern Recognit. 2019, 100, 107124. [Google Scholar] [CrossRef]
- Zhou, F.; Jiang, Z.; Shui, C.; Wang, B.; Chaib-draa, B. Domain generalization via optimal transport with metric similarity learning. Neurocomputing 2021, 456, 469–480. [Google Scholar] [CrossRef]
- Xu, Z.; Li, W.; Niu, L.; Xu, D. Exploiting Low-Rank Structure from Latent Domains for Domain Generalization. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Li, W.; Xu, Z.; Xu, D.; Dai, D.; Gool, L.V. Domain Generalization and Adaptation using Low Rank Exemplar SVMs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1114–1127. [Google Scholar] [CrossRef]
- Ding, Z.; Fu, Y. Deep Domain Generalization With Structured Low-Rank Constraint. IEEE Trans. Image Process. 2018, 27, 304–313. [Google Scholar] [CrossRef]
- Balaji, Y.; Sankaranarayanan, S.; Chellappa, R. Metareg: Towards domain generalization using meta-regularization. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Li, D.; Yang, Y.; Song, Y.Z.; Hospedales, T.M. Learning to generalize: Meta-learning for domain generalization. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Dou, Q.; Castro, D.C.; Kamnitsas, K.; Glocker, B. Domain Generalization via Model-Agnostic Learning of Semantic Features. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver BC, Canada, 8–14 December 2019. [Google Scholar]
- Chen, K.; Zhuang, D.; Chang, J.M. Discriminative adversarial domain generalization with meta-learning based cross-domain validation. Neurocomputing 2022, 467, 418–426. [Google Scholar] [CrossRef]
- Bucci, S.; D’Innocente, A.; Liao, Y.; Carlucci, F.M.; Caputo, B.; Tommasi, T. Self-Supervised Learning Across Domains. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5516–5528. [Google Scholar] [CrossRef] [PubMed]
- Dosovitskiy, A.; Springenberg, J.T.; Riedmiller, M.; Brox, T. Discriminative unsupervised feature learning with convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- DeVries, T.; Taylor, G.W. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv 2017, arXiv:1708.04552. [Google Scholar]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond Empirical Risk Minimization. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Hendrycks, D.; Mu, N.; Cubuk, E.D.; Zoph, B.; Gilmer, J.; Lakshminarayanan, B. AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Ho, D.; Liang, E.; Stoica, I.; Abbeel, P.; Chen, X. Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019. [Google Scholar]
- Volpi, R.; Namkoong, H.; Sener, O.; Duchi, J.C.; Murino, V.; Savarese, S. Generalizing to unseen domains via adversarial data augmentation. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Chen, W.; Tian, L.; Fan, L.; Wang, Y. Augmentation Invariant Training. In Proceedings of the International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.; Oliver, A.; Raffel, C.A. MixMatch: A Holistic Approach to Semi-Supervised Learning. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Grandvalet, Y.; Bengio, Y. Semi-supervised learning by entropy minimization. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 13–18 December 2004. [Google Scholar]
- Li, D.; Yang, Y.; Song, Y.Z.; Hospedales, T.M. Deeper, broader and artier domain generalization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Saenko, K.; Hulis, B.; Fritz, M.; Darrel, T. Adapting visual category models to new domains. In Proceedings of the European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010. [Google Scholar]
- Venkateswara, H.; Eusebio, J.; Chakraborty, S.; Panchanathan, S. Deep Hashing Network for Unsupervised Domain Adaptation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Torralba, A.; Efros, A.A. Unbiased look at dataset bias. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011. [Google Scholar]
- Recht, B.; Roelofs, R.; Schmidt, L.; Shankar, V. Do cifar-10 classifiers generalize to cifar-10? arXiv 2018, arXiv:1806.00451. [Google Scholar]
- Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; Toronto, ON, Canada, 2009. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep Transfer Learning with Joint Adaptation Networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Carlucci, F.M.; Porzi, L.; Caputo, B.; Ricci, E.; Bulo, S.R. Just dial: Domain alignment layers for unsupervised domain adaptation. In Proceedings of the International Conference on Image Analysis and Processing, Catania, Italy, 11–15 September 2017. [Google Scholar]
- Mancini, M.; Porzi, L.; RotaBulo, S.; Caputo, B.; Ricci, E. Boosting domain adaptation by discovering latent domains. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Conditional Adversarial Domain Adaptation. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Zhang, Y.; Liu, T.; Long, M.; Jordan, M. Bridging Theory and Algorithm for Domain Adaptation. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019. [Google Scholar]
- Sun, J.; Wang, Z.; Wang, W.; Li, H.; Sun, F. Domain adaptation with geometrical preservation and distribution alignment. Neurocomputing 2021, 454, 152–167. [Google Scholar] [CrossRef]
- Motiian, S.; Piccirilli, M.; Adjeroh, D.A.; Doretto, G. Unified deep supervised domain adaptation and generalization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Li, Y.; Tian, X.; Gong, M.; Liu, Y.; Liu, T.; Zhang, K.; Tao, D. Deep domain generalization via conditional invariant adversarial networks. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- D’Innocente, A.; Caputo, B. Domain generalization with domain-specific aggregation modules. In Proceedings of the 40th German Conference on Pattern Recognition (GCPR), Stuttgart, Germany, 9–12 October 2018. [Google Scholar]
- Matsuura, T.; Harada, T. Domain Generalization Using a Mixture of Multiple Latent Domains. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11749–11756. [Google Scholar]
- Zhao, S.; Gong, M.; Liu, T.; Fu, H.; Tao, D. Domain Generalization via Entropy Regularization. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 16096–16107. [Google Scholar]
- Sankaranarayanan, S.; Balaji, Y.; Castillo, C.D.; Chellappa, R. Generate to Adapt: Aligning Domains Using Generative Adversarial Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Sun, Y.; Wang, X.; Liu, Z.; Miller, J.; Efros, A.A.; Hardt, M. Test-Time Training for Out-of-Distribution Generalization. In Proceedings of the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020. [Google Scholar]
- van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Name | Magnitude Type | Magnitude Range | |
---|---|---|---|
Geometric transformations | ShearX | continuous | [0, 0.3] |
ShearY | continuous | [0, 0.3] | |
TranslateX | continuous | [0, 100] | |
TranslateY | continuous | [0, 100] | |
Rotate | continuous | [0, 30] | |
Flip | none | none | |
Color-based transformations | Solarize | discrete | [0, 255] |
Posterize | discrete | [0, 4] | |
Invert | none | none | |
Contrast | continuous | [0.1, 1.9] | |
Color | continuous | [0.1, 1.9] | |
Brightness | continuous | [0.1, 1.9] | |
Sharpness | continuous | [0.1, 1.9] | |
AutoContrast | none | none | |
Equalize | none | none | |
Other transformations | CutOut | discrete | [0, 40] |
SamplePairing | continuous | [0, 0.4] |
Methods | Task | Year | Description |
---|---|---|---|
DANN [2] | DA | 2015 | Domain adversarial training. |
DAN [1] | DA | 2015 | Deep adaptation network. |
ADDA [23] | DA | 2017 | Adversarial discriminative domain adaptation. |
JAN [62] | DA | 2017 | Joint adaptation network. |
Dial [63] | DA | 2017 | Domain alignment layers. |
DDiscovery [64] | DA | 2018 | Domain discovery. |
CDAN [65] | DA | 2018 | Conditional domain adversarial training. |
MDD [66] | DA | 2019 | Adversarial training with margin disparity discrepancy. |
Rot [4] | DA | 2019 | Self-supervised learning by rotation prediction. |
RotC [29] | DA | 2020 | Self-supervised learning with consistency training. |
ALDA [28] | DA | 2020 | Adversarial-learned loss for domain adaptation. |
MLADA [24] | DA | 2021 | Multi-layer adversarial domain adaptation. |
GPDA [67] | DA | 2021 | Geometrical preservation and distribution alignment. |
CCSA [68] | DA and DG | 2017 | Embedding subspace learning. |
JiGen [5] | DA and DG | 2019 | Self-supervised learning by solving jigsaw puzzle. |
JigRot [43] | DA and DG | 2021 | Self-supervised learning by combining jigsaw and rotation. |
TF [53] | DG | 2017 | Low-rank parametrized network. |
SLRC [38] | DG | 2017 | Low rank constraint. |
CIDDG [69] | DG | 2018 | Conditional invariant deep domain generalization. |
MMD-AAE [33] | DG | 2018 | Adversarial auto-encoders. |
D-SAM [70] | DG | 2018 | Domain-specific aggregation modules. |
MLDG [40] | DG | 2018 | Meta learning approach. |
MetaReg [39] | DG | 2018 | Meta learning approach. |
MMLD [71] | DG | 2020 | Mixture of Multiple Latent Domains. |
ER [72] | DG | 2020 | Domain generalization via entropy regularization. |
DADG [42] | DG | 2021 | Discriminative adversarial domain generalization. |
WADG [35] | DG | 2021 | Wasserstein adversarial domain generalization. |
PACS-DA | Art_Paint. | Cartoon | Sketches | Photo | Avg. | |
---|---|---|---|---|---|---|
[64] | Deep All | 74.70 | 72.40 | 60.10 | 92.90 | 75.03 |
Dial | 87.30 | 85.50 | 66.80 | 97.00 | 84.15 | |
DDiscovery | 87.70 | 86.90 | 69.60 | 97.00 | 85.30 | |
[5] | Deep All | 77.85 | 74.86 | 67.74 | 95.73 | 79.05 |
JiGen | 84.88 | 81.07 | 79.05 | 97.96 | 85.74 | |
[4] | Deep All | 74.70 | 72.40 | 60.10 | 92.90 | 75.00 |
Rot | 88.70 | 86.40 | 74.90 | 98.00 | 87.00 | |
[29] | Deep All | 74.70 | 72.40 | 60.10 | 92.90 | 75.00 |
RotC | 90.30 | 87.40 | 75.10 | 97.90 | 87.70 | |
[43] | Deep All | 77.83 | 74.26 | 65.81 | 95.71 | 78.40 |
JigRot | 89.67 | 82.87 | 83.93 | 98.17 | 88.66 | |
[65] | DANN | 82.91 | 83.83 | 69.50 | 96.29 | 83.13 |
DANN (Aug) | 89.01 | 83.06 | 78.54 | 97.25 | 86.96 | |
[65] | CDAN | 85.70 | 88.10 | 73.10 | 97.20 | 86.00 |
CDAN+E | 87.40 | 89.40 | 75.30 | 97.80 | 87.50 | |
CDAN (Aug) | 90.67 | 85.96 | 80.50 | 97.43 | 88.64 | |
CDAN+E (Aug) | 90.28 | 85.41 | 81.37 | 98.08 | 88.78 | |
[66] | MDD | 89.60 | 88.99 | 87.35 | 97.78 | 90.92 |
MDD (Aug) | 90.28 | 86.26 | 85.72 | 97.54 | 89.95 | |
Deep All | 77.26 | 72.64 | 69.05 | 95.41 | 78.59 | |
Deep All (Aug) | 80.03 | 74.49 | 67.85 | 95.27 | 79.41 | |
Ours | 92.56 | 91.44 | 87.08 | 98.04 | 92.28 |
Office-Home | Avg. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-50 [60] | 34.9 | 50.0 | 58.0 | 37.4 | 41.9 | 46.2 | 38.5 | 31.2 | 60.4 | 53.9 | 41.2 | 59.9 | 46.1 |
DAN [1] | 43.6 | 57.0 | 67.9 | 45.8 | 56.5 | 60.4 | 44.0 | 43.6 | 67.7 | 63.1 | 51.5 | 74.3 | 56.3 |
DANN [2] | 45.6 | 59.3 | 70.1 | 47.0 | 58.5 | 60.9 | 46.1 | 43.7 | 68.5 | 63.2 | 51.8 | 76.8 | 57.6 |
JAN [62] | 45.9 | 61.2 | 68.9 | 50.4 | 59.7 | 61.0 | 45.8 | 43.4 | 70.3 | 63.9 | 52.4 | 76.8 | 58.3 |
GPDA [67] | 52.9 | 73.4 | 77.1 | 52.9 | 66.1 | 65.6 | 52.9 | 44.9 | 76.1 | 65.6 | 49.7 | 79.2 | 63.0 |
CDAN [65] | 49.0 | 69.3 | 74.5 | 54.4 | 66.0 | 68.4 | 55.6 | 48.3 | 75.9 | 68.4 | 55.4 | 80.5 | 63.8 |
Rot [4] | 50.4 | 67.8 | 74.6 | 58.7 | 66.7 | 67.4 | 55.7 | 52.4 | 77.5 | 71.0 | 59.6 | 81.2 | 65.3 |
CDAN+E [65] | 50.7 | 70.6 | 76.0 | 57.6 | 70.0 | 70.0 | 57.4 | 50.9 | 77.3 | 70.9 | 56.7 | 81.6 | 65.8 |
ALDA [28] | 53.7 | 70.1 | 76.4 | 60.2 | 72.6 | 71.5 | 56.8 | 51.9 | 77.1 | 70.2 | 56.3 | 82.1 | 66.6 |
RotC [29] | 51.7 | 69.0 | 75.4 | 60.4 | 70.3 | 70.7 | 57.7 | 53.3 | 78.6 | 72.2 | 59.9 | 81.7 | 66.7 |
Ours | 55.1 | 69.0 | 74.5 | 62.5 | 66.7 | 69.8 | 62.2 | 56.0 | 77.7 | 73.5 | 61.9 | 82.2 | 67.6 |
ImageCLEF-DA | Avg. | ||||||
---|---|---|---|---|---|---|---|
ResNet-50 [60] | 74.8 | 83.9 | 91.5 | 78.0 | 65.5 | 91.2 | 80.7 |
DAN [1] | 74.5 | 82.2 | 92.8 | 86.3 | 69.2 | 89.8 | 82.5 |
Rot [4] | 77.9 | 91.6 | 95.6 | 86.9 | 70.5 | 94.8 | 84.2 |
DANN [2] | 75.0 | 86.0 | 96.2 | 87.0 | 74.3 | 91.5 | 85.0 |
JAN [62] | 76.8 | 88.0 | 94.7 | 89.5 | 74.2 | 91.7 | 85.8 |
CDAN [65] | 76.7 | 90.6 | 97.0 | 90.5 | 74.5 | 93.5 | 87.1 |
MLADA [24] | 78.2 | 91.2 | 95.5 | 90.8 | 76.0 | 92.2 | 87.3 |
CDAN+E [65] | 77.7 | 90.7 | 97.7 | 91.3 | 74.2 | 94.3 | 87.7 |
RotC [29] | 78.6 | 92.5 | 96.1 | 88.9 | 73.9 | 95.9 | 87.7 |
Ours | 78.1 | 92.7 | 96.5 | 91.6 | 74.9 | 95.9 | 88.2 |
PACS-DG | Art_Paint. | Cartoon | Sketches | Photo | Avg. | |
---|---|---|---|---|---|---|
[53] | Deep All | 63.30 | 63.13 | 54.07 | 87.70 | 67.05 |
TF | 62.86 | 66.97 | 57.51 | 89.50 | 69.21 | |
[69] | Deep All | 57.55 | 67.04 | 58.52 | 77.98 | 65.27 |
DeepC | 62.30 | 69.58 | 64.45 | 80.72 | 69.26 | |
CIDDG | 62.70 | 69.73 | 64.45 | 78.65 | 68.88 | |
[40] | Deep All | 64.91 | 64.28 | 53.08 | 86.67 | 67.24 |
MLDG | 66.23 | 66.88 | 58.96 | 88.00 | 70.01 | |
[70] | Deep All | 64.44 | 72.07 | 58.07 | 87.50 | 70.52 |
D-SAM | 63.87 | 70.70 | 64.66 | 85.55 | 71.20 | |
[42] | Deep All | 63.12 | 66.16 | 60.27 | 88.65 | 69.55 |
DADG | 66.21 | 70.28 | 62.18 | 89.76 | 72.11 | |
[39] | Deep All | 67.21 | 66.12 | 55.32 | 88.47 | 69.28 |
MetaReg | 69.82 | 70.35 | 59.26 | 91.07 | 72.63 | |
[5] | Deep All | 66.68 | 69.41 | 60.02 | 89.98 | 71.52 |
JiGen | 67.63 | 71.71 | 65.18 | 89.00 | 73.38 | |
JiGen (Aug) | 71.53 | 69.50 | 68.06 | 91.08 | 75.04 | |
[43] | Deep All | 66.50 | 69.65 | 61.42 | 89.68 | 71.81 |
JigRot | 69.70 | 71.00 | 66.00 | 89.60 | 74.08 | |
[71] | Deep All | 68.09 | 70.23 | 61.80 | 88.86 | 72.25 |
MMLD | 69.27 | 72.83 | 66.44 | 88.98 | 74.38 | |
[72] | Deep All | 68.35 | 70.14 | 90.83 | 64.98 | 73.57 |
ER | 71.34 | 70.29 | 89.92 | 71.15 | 75.67 | |
[35] | Deep All | 63.30 | 63.13 | 54.07 | 87.70 | 67.05 |
WADG | 70.21 | 72.51 | 70.32 | 89.81 | 75.71 | |
Deep All | 68.26 | 74.52 | 63.65 | 90.78 | 74.30 | |
Deep All (Aug) | 73.73 | 70.09 | 65.79 | 92.22 | 75.45 | |
Ours w/o consis. | 73.44 | 71.42 | 73.91 | 89.70 | 77.12 | |
Ours | 74.02 | 72.23 | 72.36 | 91.16 | 77.44 |
PACS-DG | Art_Paint. | Cartoon | Sketches | Photo | Avg. | |
---|---|---|---|---|---|---|
[42] | Deep All | 75.60 | 72.30 | 68.10 | 93.06 | 77.27 |
DADG | 79.89 | 76.25 | 70.51 | 94.86 | 80.38 | |
[70] | Deep All | 77.87 | 75.89 | 69.27 | 95.19 | 79.55 |
D-SAM | 77.33 | 72.43 | 77.83 | 95.30 | 80.72 | |
[5] | Deep All | 77.85 | 74.86 | 67.74 | 95.73 | 79.05 |
JiGen | 79.42 | 75.25 | 71.35 | 96.03 | 80.51 | |
JiGen (Aug) | 79.44 | 71.50 | 70.86 | 95.33 | 79.28 | |
[72] | Deep All | 78.93 | 75.02 | 96.60 | 70.48 | 80.25 |
ER | 80.70 | 76.40 | 96.65 | 71.77 | 81.38 | |
[43] | Deep All | 77.83 | 74.26 | 65.81 | 95.71 | 78.40 |
JigRot | 81.07 | 73.97 | 74.67 | 95.93 | 81.41 | |
[39] | Deep All | 79.90 | 75.10 | 69.50 | 95.20 | 79.93 |
MetaReg | 83.70 | 77.20 | 70.30 | 95.50 | 81.68 | |
[71] | Deep All | 78.34 | 75.02 | 65.24 | 96.21 | 78.70 |
MMLD | 81.28 | 77.16 | 72.29 | 96.09 | 81.83 | |
Deep All | 77.26 | 72.64 | 69.05 | 95.41 | 78.59 | |
Deep All (Aug) | 80.03 | 74.49 | 67.85 | 95.27 | 79.41 | |
Ours w/o consis. | 81.84 | 75.05 | 77.01 | 95.07 | 82.24 | |
Ours | 82.32 | 75.70 | 77.03 | 95.87 | 82.73 |
Office-Home-DG | Art | Clipart | Product | Real-World | Avg. | |
---|---|---|---|---|---|---|
[70] | Deep All | 55.59 | 42.42 | 70.34 | 70.86 | 59.81 |
D-SAM | 58.03 | 44.37 | 69.22 | 71.45 | 60.77 | |
Deep All | 52.15 | 45.86 | 70.86 | 73.15 | 60.51 | |
[5] | JiGen | 53.04 | 47.51 | 71.47 | 72.79 | 61.20 |
[35] | WADG | 55.34 | 44.82 | 72.03 | 73.55 | 61.44 |
[43] | JigRot | 58.33 | 49.67 | 72.97 | 75.27 | 64.06 |
[42] | Deep All | 54.31 | 41.41 | 70.31 | 73.03 | 59.77 |
DADG | 55.57 | 48.71 | 70.90 | 73.70 | 62.22 | |
Deep All | 57.16 | 49.06 | 72.22 | 73.59 | 63.01 | |
Ours | 59.20 | 54.67 | 73.21 | 73.93 | 65.25 |
VLCS-DG | Caltech | Labelme | Pascal | Sun | Avg. | |
---|---|---|---|---|---|---|
[69] | Deep All | 85.73 | 61.28 | 62.71 | 59.33 | 67.26 |
DeepC | 87.47 | 62.60 | 63.97 | 61.51 | 68.89 | |
CIDDG | 88.83 | 63.06 | 64.38 | 62.10 | 69.59 | |
[68] | Deep All | 86.10 | 55.60 | 59.10 | 54.60 | 63.85 |
CCSA | 92.30 | 62.10 | 67.10 | 59.10 | 70.15 | |
[38] | Deep All | 86.67 | 58.20 | 59.10 | 57.86 | 65.46 |
SLRC | 92.76 | 62.34 | 65.25 | 63.54 | 70.97 | |
[53] | Deep All | 93.40 | 62.11 | 68.41 | 64.16 | 72.02 |
TF | 93.63 | 63.49 | 69.99 | 61.32 | 72.11 | |
[33] | MMD-AAE | 94.40 | 62.60 | 67.70 | 64.40 | 72.28 |
[70] | Deep All | 94.95 | 57.45 | 66.06 | 65.87 | 71.08 |
D-SAM | 91.75 | 56.95 | 58.59 | 60.84 | 67.03 | |
[43] | Deep All | 96.15 | 59.05 | 70.84 | 63.92 | 72.49 |
JigRot | 96.30 | 59.20 | 70.73 | 66.37 | 73.15 | |
[5] | Deep All | 96.93 | 59.18 | 71.96 | 62.57 | 72.66 |
JiGen | 96.93 | 60.90 | 70.62 | 64.30 | 73.19 | |
[71] | Deep All | 95.89 | 57.88 | 72.01 | 67.76 | 73.39 |
MMLD | 96.66 | 58.77 | 71.96 | 68.13 | 73.88 | |
[72] | Deep All | 97.15 | 58.07 | 73.11 | 68.79 | 74.28 |
ER | 96.92 | 58.26 | 73.24 | 69.10 | 74.38 | |
[35] | Deep All | 92.86 | 63.10 | 68.67 | 64.11 | 72.19 |
WADG | 96.68 | 64.26 | 71.47 | 66.62 | 74.76 | |
[42] | Deep All | 94.44 | 61.30 | 68.11 | 63.58 | 71.86 |
DADG | 96.80 | 63.44 | 70.77 | 66.81 | 74.76 | |
Deep All | 97.72 | 63.03 | 71.93 | 66.70 | 74.85 | |
Ours | 98.74 | 62.27 | 72.79 | 68.16 | 75.49 |
PACS-DA | |||||||
---|---|---|---|---|---|---|---|
Rnd-Color | Rnd-Geo | Adv-Stn | Art_Paint. | Cartoon | Sketches | Photo | Avg. |
√ | 93.02 | 91.51 | 86.62 | 98.00 | 92.29 | ||
√ | 91.83 | 89.45 | 83.42 | 97.98 | 90.67 | ||
√ | 91.85 | 91.61 | 82.45 | 97.92 | 90.96 | ||
√ | √ | 93.10 | 91.01 | 86.33 | 98.14 | 92.15 | |
√ | √ | 92.56 | 91.44 | 87.08 | 98.04 | 92.28 |
PACS-DA | |||||||
---|---|---|---|---|---|---|---|
Rnd-Color | Rnd-Geo | Adv-Stn | Art_Paint. | Cartoon | Sketches | Photo | Avg. |
√ | 71.40 | 72.43 | 71.44 | 90.20 | 76.37 | ||
√ | 71.08 | 72.40 | 66.98 | 91.36 | 75.46 | ||
√ | 70.92 | 73.46 | 69.66 | 90.78 | 76.21 | ||
√ | √ | 73.05 | 72.15 | 69.08 | 91.64 | 76.48 | |
√ | √ | 74.02 | 72.23 | 72.36 | 91.16 | 77.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L.; Xu, J.; Zhao, D.; Shang, E.; Zhu, Q.; Dai, B. Adversarial and Random Transformations for Robust Domain Adaptation and Generalization. Sensors 2023, 23, 5273. https://doi.org/10.3390/s23115273
Xiao L, Xu J, Zhao D, Shang E, Zhu Q, Dai B. Adversarial and Random Transformations for Robust Domain Adaptation and Generalization. Sensors. 2023; 23(11):5273. https://doi.org/10.3390/s23115273
Chicago/Turabian StyleXiao, Liang, Jiaolong Xu, Dawei Zhao, Erke Shang, Qi Zhu, and Bin Dai. 2023. "Adversarial and Random Transformations for Robust Domain Adaptation and Generalization" Sensors 23, no. 11: 5273. https://doi.org/10.3390/s23115273
APA StyleXiao, L., Xu, J., Zhao, D., Shang, E., Zhu, Q., & Dai, B. (2023). Adversarial and Random Transformations for Robust Domain Adaptation and Generalization. Sensors, 23(11), 5273. https://doi.org/10.3390/s23115273