Shaking Device for Homogeneous Dispersion of Magnetic Beads in Droplet Microfluidics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microfabrication of the Shaking Device
2.2. Syringes and Tubes for Liquid Storage
2.3. Reagent Preparation
2.4. Microfluidic Device Fabrication
2.5. Optical Setup for the Characterization and Validation of the Shaking Device
3. Results and Discussion
3.1. Sedimentation of Beads in the Tube
3.2. Encaspulation of Beads within Droplets and Droplet Size Distribution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Li, J.; Sun, Y. Microfluidic Approaches for Cancer Cell Detection, Characterization, and Separation. Lab Chip 2012, 12, 1753–1767. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Cordero, J.L.; Maerkl, S.J. Microfluidic Systems for Cancer Diagnostics. Curr. Opin. Biotechnol. 2020, 65, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figeys, D.; Pinto, D. A Revolution in Biological and Medical Sciences A Look at Some of The. Anal. Chem. 2000, 72, 330–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sierra, J.; Marrugo-Ramírez, J.; Rodriguez-Trujillo, R.; Mir, M.; Samitier, J. Sensor-Integrated Microfluidic Approaches for Liquid Biopsies Applications in Early Detection of Cancer. Sensors 2020, 20, 1317. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, N.; Sugimoto, K.; Tang, J.; Nishi, T.; Sato, I.; Hiramoto, M.; Aizawa, S.; Hatakeyama, M.; Ohba, R.; Hatori, H.; et al. High-Performance Affinity Beads for Identifying Drug Receptors. Nat. Biotechnol. 2000, 18, 877–881. [Google Scholar] [CrossRef]
- Berensmeier, S. Magnetic Particles for the Separation and Purification of Nucleic Acids. Appl. Microbiol. Biotechnol. 2006, 73, 495–504. [Google Scholar] [CrossRef]
- Yoon, J.G.; Kang, J.S.; Hwang, S.Y.; Song, J.; Jeong, S.H. Magnetic Bead-Based Nucleic Acid Purification Kit: Clinical Application and Performance Evaluation in Stool Specimens. J. Microbiol. Methods 2016, 124, 62–68. [Google Scholar] [CrossRef]
- Lien, K.Y.; Lin, J.L.; Liu, C.Y.; Lei, H.Y.; Lee, G. Bin Purification and Enrichment of Virus Samples Utilizing Magnetic Beads on a Microfluidic System. Lab Chip 2007, 7, 868–875. [Google Scholar] [CrossRef]
- Neurauter, A.A.; Bonyhadi, M.; Lien, E.; Nøkleby, L.; Ruud, E.; Camacho, S.; Aarvak, T. Cell Isolation and Expansion Using Dynabeads®. In Cell Separation: Fundamentals, Analytical and Preparative Methods; Springer: Berlin/Heidelberg, Germany, 2007; pp. 41–73. [Google Scholar]
- Deng, Y.; Zhang, N.; Zhao, L.; Yu, X.; Ji, X.; Liu, W.; Guo, S.; Liu, K.; Zhao, X.Z. Rapid Purification of Cell Encapsulated Hydrogel Beads from Oil Phase to Aqueous Phase in a Microfluidic Device. Lab Chip 2011, 11, 4117–4121. [Google Scholar] [CrossRef]
- He, M.; Crow, J.; Roth, M.; Zeng, Y.; Godwin, A.K. Integrated Immunoisolation and Protein Analysis of Circulating Exosomes Using Microfluidic Technology. Lab Chip 2014, 14, 3773–3780. [Google Scholar] [CrossRef] [Green Version]
- Ng, A.H.C.; Uddayasankar, U.; Wheeler, A.R. Immunoassays in Microfluidic Systems. Anal. Bioanal. Chem. 2010, 397, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Stueber, D.D.; Villanova, J.; Aponte, I.; Xiao, Z.; Colvin, V.L. Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics 2021, 13, 943. [Google Scholar] [CrossRef] [PubMed]
- Haukanes, B.I.; Kvam, C. Application of Magnetic Beads in Bioassays. Bio/Technology 1993, 11, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Gijs, M.A.M. Magnetic Bead Handling On-Chip: New Opportunities for Analytical Applications. Microfluid. Nanofluidics 2004, 1, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Brouzes, E.; Kruse, T.; Kimmerling, R.; Strey, H.H. Rapid and Continuous Magnetic Separation in Droplet Microfluidic Devices. Lab Chip 2015, 15, 908–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sista, R.S.; Eckhardt, A.E.; Srinivasan, V.; Pollack, M.G.; Palanki, S.; Pamula, V.K. Heterogeneous Immunoassays Using Magnetic Beads on a Digital Microfluidic Platform. Lab Chip 2008, 8, 2188–2196. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Lien, K.Y.; Huang, K.J.; Lei, H.Y.; Lee, G. Bin Micro Flow Cytometry Utilizing a Magnetic Bead-Based Immunoassay for Rapid Virus Detection. Biosens. Bioelectron. 2008, 24, 855–862. [Google Scholar] [CrossRef]
- Herrmann, M.; Roy, E.; Veres, T.; Tabrizian, M. Microfluidic ELISA on Non-Passivated PDMS Chip Using Magnetic Bead Transfer inside Dual Networks of Channels. Lab Chip 2007, 7, 1546–1552. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.W.; Oh, K.W.; Thomas, J.H.; Heineman, W.R.; Halsall, H.B.; Nevin, J.H.; Helmicki, A.J.; Henderson, H.T.; Ahn, C.H. An Integrated Microfluidic Biochemical Detection System for Protein Analysis with Magnetic Bead-Based Sampling Capabilities. Lab Chip 2002, 2, 27–30. [Google Scholar] [CrossRef]
- Serra, M.; Ferraro, D.; Pereiro, I.; Viovy, J.L.; Descroix, S. The Power of Solid Supports in Multiphase and Droplet-Based Microfluidics: Towards Clinical Applications. Lab Chip 2017, 17, 3979–3999. [Google Scholar] [CrossRef]
- Onishi, T.; Mihara, K.; Matsuda, S.; Sakamoto, S.; Kuwahat, A.; Sekino, M.; Kusakabe, M.; Handa, H.; Kitagawa, Y. Application of Magnetic Nanoparticles for Rapid Detection and In Situ Diagnosis in Clinical Oncology. Cancers 2022, 14, 364. [Google Scholar] [CrossRef] [PubMed]
- Piazza, R.; Pierno, M.; Vignati, E.; Venturoli, G.; Francia, F.; Mallardi, A.; Palazzo, G. Liquid-Liquid Phase Separation of a Surfactant-Solubilized Membrane Protein. Phys. Rev. Lett. 2003, 90, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dueck, J. The Sedimentation Velocity of a Particle in a Wide Range of Reynolds Numbers in the Application to the Analysis of the Separation Curve. Adv. Powder Technol. 2013, 24, 150–153. [Google Scholar] [CrossRef]
- Meggiolaro, A.; Moccia, V.; Brun, P.; Pierno, M.; Mistura, G.; Zappulli, V.; Ferraro, D. Microfluidic Strategies for Extracellular Vesicle Isolation: Towards Clinical Applications. Biosensors 2023, 13, 50. [Google Scholar] [CrossRef]
- Hajba, L.; Guttman, A. Circulating Tumor-Cell Detection and Capture Using Microfluidic Devices. TrAC—Trends Anal. Chem. 2014, 59, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Min, H.; Jo, S.M.; Kim, H.S. Efficient Capture and Simple Quantification of Circulating Tumor Cells Using Quantum Dots and Magnetic Beads. Small 2015, 11, 2536–2542. [Google Scholar] [CrossRef]
- Afshar, R.; Moser, Y.; Lehnert, T.; Gijs, M.A.M. Three-Dimensional Magnetic Focusing of Superparamagnetic Beads for on-Chip Agglutination Assays. Anal. Chem. 2011, 83, 1022–1029. [Google Scholar] [CrossRef]
- Teste, B.; Ali-Cherif, A.; Viovy, J.L.; Malaquin, L. A Low Cost and High Throughput Magnetic Bead-Based Immuno-Agglutination Assay in Confined Droplets. Lab Chip 2013, 13, 2344–2349. [Google Scholar] [CrossRef]
- Lombardi, D.; Dittrich, P.S. Droplet Microfluidics with Magnetic Beads: A New Tool to Investigate Drug-Protein Interactions. Anal. Bioanal. Chem. 2011, 399, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, D.; Champ, J.; Teste, B.; Serra, M.; Malaquin, L.; Viovy, J.L.; De Cremoux, P.; Descroix, S. Microfluidic Platform Combining Droplets and Magnetic Tweezers: Application to HER2 Expression in Cancer Diagnosis. Sci. Rep. 2016, 6, 25540. [Google Scholar] [CrossRef] [Green Version]
- Doonan, S.R.; Bailey, R.C. K-Channel: A Multifunctional Architecture for Dynamically Reconfigurable Sample Processing in Droplet Microfluidics. Anal. Chem. 2017, 89, 4091–4099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, M.; Mai, T.D.; Serra, A.L.; Nguyen, M.C.; Eisele, A.; Perié, L.; Viovy, J.L.; Ferraro, D.; Descroix, S. Integrated Droplet Microfluidic Device for Magnetic Particles Handling: Application to DNA Size Selection in NGS Libraries Preparation. Sens. Actuators B Chem. 2020, 305, 127346. [Google Scholar] [CrossRef]
- Ryu, K.S.; Shaikh, K.; Goluch, E.; Fan, Z.; Liu, C. Micro Magnetic Stir-Bar Mixer Integrated with Parylene Microfluidic Channels. Lab Chip 2004, 4, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Chong, W.H.; Chin, L.K.; Tan, R.L.S.; Wang, H.; Liu, A.Q.; Chen, H. Stirring in Suspension: Nanometer-Sized Magnetic Stir Bars. Angew. Chem.—Int. Ed. 2013, 52, 8570–8573. [Google Scholar] [CrossRef] [PubMed]
- Anyaduba, T.D.; Otoo, J.A.; Schlappi, T.S. Picoliter Droplet Generation and Dense Bead-in-Droplet Encapsulation via Microfluidic Devices Fabricated via 3D Printed Molds. Micromachines 2022, 13, 1946. [Google Scholar] [CrossRef] [PubMed]
- Price, A.K.; Macconnell, A.B.; Paegel, B.M. Microfluidic Bead Suspension Hopper. Anal. Chem. 2014, 86, 5039–5044. [Google Scholar] [CrossRef]
- Lane, S.I.; Butement, J.; Harrington, J.; Underwood, T.; Shrimpton, J.; West, J. Perpetual Sedimentation for the Continuous Delivery of Particulate Suspensions. Lab Chip 2019, 19, 3771–3775. [Google Scholar] [CrossRef]
- Zilionis, R.; Nainys, J.; Veres, A.; Savova, V.; Zemmour, D.; Klein, A.M.; Mazutis, L. Single-Cell Barcoding and Sequencing Using Droplet Microfluidics. Nat. Protoc. 2017, 12, 44–73. [Google Scholar] [CrossRef]
- Ferraro, D.; Serra, M.; Filippi, D.; Zago, L.; Guglielmin, E.; Pierno, M.; Descroix, S.; Viovy, J.L.; Mistura, G. Controlling the Distance of Highly Confined Droplets in a Capillary by Interfacial Tension for Merging On-Demand. Lab Chip 2019, 19, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, D.; Sartori, P.; Akhtar, N.; Zaltron, A.; Pierno, M.; Mistura, G. The Role of Surfactants on the Shape of Confined Droplets Moving in Circular Microchannel. Phys. Fluids 2021, 33, 052121. [Google Scholar] [CrossRef]
- McDonald, J.C.; Whitesides, G.M. Poly(Dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Acc. Chem. Res. 2002, 35, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Tóth, T.; Ferraro, D.; Chiarello, E.; Pierno, M.; Mistura, G.; Bissacco, G.; Semprebon, C. Suspension of Water Droplets on Individual Pillars. Langmuir 2011, 27, 4742–4748. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.Q.; Zhang, Y.X.; Zhu, Y.; Du, W.B.; Yao, B.; Fang, Q. Multifunctional Picoliter Droplet Manipulation Platform and Its Application in Single Cell Analysis. Anal. Chem. 2011, 83, 7570–7576. [Google Scholar] [CrossRef]
- Serra, M.; Gontran, E.; Hajji, I.; Malaquin, L.; Viovy, J.L.; Descroix, S.; Ferraro, D. Development of a Droplet Microfluidics Device Based on Integrated Soft Magnets and Fluidic Capacitor for Passive Extraction and Redispersion of Functionalized Magnetic Particles. Adv. Mater. Technol. 2020, 5, 1901088. [Google Scholar] [CrossRef]
- Liu, D.; Li, Q.; Luo, J.; Huang, Q.; Zhang, Y. An SPRI Beads-Based DNA Purification Strategy for Flexibility and Cost-Effectiveness. BMC Genom. 2023, 24, 125. [Google Scholar] [CrossRef]
- Lien, K.Y.; Chuang, Y.H.; Hung, L.Y.; Hsu, K.F.; Lai, W.W.; Ho, C.L.; Chou, C.Y.; Lee, G. Bin Rapid Isolation and Detection of Cancer Cells by Utilizing Integrated Microfluidic Systems. Lab Chip 2010, 10, 2875–2886. [Google Scholar] [CrossRef]
- Castro, D.; Conchouso, D.; Kodzius, R.; Arevalo, A.; Foulds, I.G. High-Throughput Incubation and Quantification of Agglutination Assays in a Microfluidic System. Genes 2018, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Uddin, R.; Burger, R.; Donolato, M.; Fock, J.; Creagh, M.; Fougt, M.; Boisen, A. Biosensors and Bioelectronics Lab-on-a-Disc Agglutination Assay for Protein Detection by Optomagnetic Readout and Optical Imaging Using Nano- and Micro- Sized Magnetic Beads. Biosens. Bioelectron. 2016, 85, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Mai, T.D.; Ferraro, D.; Aboud, N.; Renault, R.; Serra, M.; Tran, N.T.; Viovy, J.L.; Smadja, C.; Descroix, S.; Taverna, M. Chemical Single-Step Immunoassays and Microfluidic Droplet Operation: Towards a Versatile Approach for Detection of Amyloid-β Peptide-Based Biomarkers of Alzheimer’ s Disease. Sens. Actuators B Chem. 2018, 255, 2126–2135. [Google Scholar] [CrossRef]
- Pamme, N. On-Chip Bioanalysis with Magnetic Particles. Curr. Opin. Chem. Biol. 2012, 16, 436–443. [Google Scholar] [CrossRef]
- Ngamsom, B.; Esfahani, M.M.N.; Phurimsak, C.; Lopez-martinez, M.J.; Raymond, J.; Broyer, P.; Patel, P.; Pamme, N. Analytica Chimica Acta Multiplex Sorting of Foodborne Pathogens by On-Chip Free- Fl Ow Magnetophoresis. Anal. Chim. Acta 2016, 918, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Ozkumur, E.; Shah, A.M.; Ciciliano, J.C.; Emmink, B.L.; David, T.; Brachtel, E.; Yu, M.; Chen, P.; Morgan, B.; Trautwein, J.; et al. Inertial focusing for tumor antigen–dependent and–independent sorting of rare circulating tumor cells. Sci. Transl. Med. 2013, 5, 179ra47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Liao, C.; Zuo, P.; Liu, Z.; Ye, B. Magnetic-Based Micro Fl Uidic Device for On-Chip Isolation and Detection of Tumor-Derived Exosomes. Anal. Chem. 2018, 90, 13451–13458. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poles, M.; Meggiolaro, A.; Cremaschini, S.; Marinello, F.; Filippi, D.; Pierno, M.; Mistura, G.; Ferraro, D. Shaking Device for Homogeneous Dispersion of Magnetic Beads in Droplet Microfluidics. Sensors 2023, 23, 5399. https://doi.org/10.3390/s23125399
Poles M, Meggiolaro A, Cremaschini S, Marinello F, Filippi D, Pierno M, Mistura G, Ferraro D. Shaking Device for Homogeneous Dispersion of Magnetic Beads in Droplet Microfluidics. Sensors. 2023; 23(12):5399. https://doi.org/10.3390/s23125399
Chicago/Turabian StylePoles, Maria, Alessio Meggiolaro, Sebastian Cremaschini, Filippo Marinello, Daniele Filippi, Matteo Pierno, Giampaolo Mistura, and Davide Ferraro. 2023. "Shaking Device for Homogeneous Dispersion of Magnetic Beads in Droplet Microfluidics" Sensors 23, no. 12: 5399. https://doi.org/10.3390/s23125399
APA StylePoles, M., Meggiolaro, A., Cremaschini, S., Marinello, F., Filippi, D., Pierno, M., Mistura, G., & Ferraro, D. (2023). Shaking Device for Homogeneous Dispersion of Magnetic Beads in Droplet Microfluidics. Sensors, 23(12), 5399. https://doi.org/10.3390/s23125399