Ultra-Scaled Si Nanowire Biosensors for Single DNA Molecule Detection †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Physics and Sensitivity in the Presence of a Single Charge
3.1.1. Sensitivity: Physics and Definitions
3.1.2. Impact of Physical Parameters on the Unscreened Sensitivity
3.1.3. Ions and Surface Charge Screening in Solution
3.2. Sensitivity and Limit of Detection in the Presence of a Single DNA Molecule
3.2.1. Impact of Physical Parameters on the Sensitivity in Solution
3.2.2. Limit of Detection
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hahm, J.-I.; Lieber, C.M. Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Lett. 2004, 4, 51–54. [Google Scholar] [CrossRef]
- Stern, E.; Klemic, J.F.; Routenberg, D.A.; Wyremebak, P.N.; Turner-Evans, D.B.; Hamilton, A.D.; LaVan, D.A.; Fahmy, T.M.; Reed, M.A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.R.; Alam, M.A. Design Considerations of Silicon Nanowire Biosensors. IEEE Trans. Electron. Devices 2007, 54, 3400–3408. [Google Scholar] [CrossRef]
- Li, Z.; Rajendran, B.; Kamins, T.I.; Li, X.; Chen, Y.; Williams, R.S. Silicon nanowires for sequence-specific DNA sensing: Device fabrication and simulation. Appl. Phys. A 2005, 80, 1257–1263. [Google Scholar] [CrossRef]
- Poghossian, A.; Cherstvy, A.; Ingebrandt, S.; Offenhäusser, A.; Schöning, M.J. Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sens. Actuators B 2005, 111–112, 470–480. [Google Scholar] [CrossRef]
- Bunimovich, Y.L.; Shin, Y.S.; Yeo, W.-S.; Amori, M.; Kwong, G.; Heath, J.R. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 2006, 128, 16323–16331. [Google Scholar] [CrossRef] [Green Version]
- Ambhorkar, P.; Wang, Z.; Ko, H.; Lee, S.; Koo, K.I.; Kim, K.; Cho, D.D. Nanowire-Based Biosensors: From Growth to Applications. Micromachines 2018, 9, 679. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Chen, H.; Fan, K.; Labunov, V.; Lazarouk, S.; Yue, X.; Liu, C.; Yang, X.; Dong, L.; Wang, G. A Supersensitive Silicon Nanowire Array Biosensor for Quantitating Tumor Marker ctDNA. Biosens. Bioelectron. 2021, 181, 113147. [Google Scholar] [CrossRef]
- Sadighbayan, D.; Hasanzadeh, M.; Ghafar-Zadeh, E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. TrAC Trends Anal. Chem. 2020, 33, 116067. [Google Scholar] [CrossRef]
- Lale, A.; Grappin, A.; Lecestre, A.; Mazenq, L.; Launay, J. Pierre Temple-Boyer, Top-down integration of suspended N+/P/N+ silicon-nanowire-based ion-sensitive field effect transistors for pH analysis at the submicronic scale. Thin Solid. Films 2023, 764, 139609. [Google Scholar] [CrossRef]
- Dai, P.; Gao, A.; Lu, N.; Li, T.; Wang, Y. A Back-Gate Controlled Silicon Nanowire Sensor with Sensitivity Improvement for DNA and pH Detection. Jpn. J. Appl. Phys. 2013, 52, 121301. [Google Scholar] [CrossRef]
- Wasfi, A.; Awwad, F.; Ayesh, A.I. Detection of DNA Bases via Field Effect Transistor of Graphene Nanoribbon With a Nanopore: Semi-Empirical Modeling. IEEE Trans. NanoBioscience 2022, 21, 347–357. [Google Scholar] [CrossRef]
- Girdhar, A.; Sathe, C.; Schulten, K.; Leburton, J.-K. Graphene quantum point contact transistor for DNA sensing. Proc. Natl. Acad. Sci. USA 2013, 110, 16748–16753. [Google Scholar] [CrossRef] [Green Version]
- Tamersit, K.; Djeffal, F. Carbon Nanotube Field-Effect Transistor With Vacuum Gate Dielectric for Label-Free Detection of DNA Molecules: A Computational Investigation. IEEE Sens. J. 2019, 19, 9263–9270. [Google Scholar] [CrossRef]
- Jena, M.K.; Kumawat, R.L.; Pathak, B. First-Principles Density Functional Theory Study on Graphene and Borophene Nanopores for Individual Identification of DNA Nucleotides. ACS Appl. Nano Mater. 2021, 4, 13573–13586. [Google Scholar] [CrossRef]
- Tamersit, K.; Djeffal, F. Double-Gate Graphene Nanoribbon Field-Effect Transistor for DNA and Gas Sensing Applications: Simulation Study and Sensitivity Analysis. IEEE Sens. J. 2016, 16, 4180–4191. [Google Scholar] [CrossRef]
- Afzalian, A.; Akhavan, N.D.; Lee, C.-W.; Yan, R.; Ferain, I.; Razavi, P.; Colinge, J.-P. A new F(ast)-CMS NEGF Algorithm for efficient 3D simulations of Switching Characteristics enhancement in constricted Tunnel Barrier Silicon Nanowire MuGFETs. J. Comput. Electron. 2009, 8, 287–306. [Google Scholar] [CrossRef]
- Afzalian, A. Computationally Efficient self-consistent Born approximation treatments of phonon scattering for Coupled-Mode Space Non-Equilibrium Green’s Functions. J. Appl. Phys. 2011, 110, 094517. [Google Scholar] [CrossRef]
- Afzalian, A.; Couniot, N.; Flandre, D. Detection Limit of ultra-scaled Nanowire Biosensors. In Proceedings of the SISPAD 2012, Denver, CO, USA, 5–7 September 2012; pp. 165–168. [Google Scholar]
- Couniot, N.; Afzalian, A.; Flandre, D. Scaling laws and performance improvements of integrated biosensor microarrays with multi-pixel per spot. Sens. Actuators B Chem. 2012, 166–167, 184–192. [Google Scholar] [CrossRef]
- Palestri, P.; Mouis, M.; Afzalian, A.; Selmi, L.; Pittino, F.; Flandre, D.; Ghibaudo, G. Sensitivity of Silicon Nanowire Biochemical Sensors, Beyond-CMOS Nanodevices 1; Chapter 3; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 43–63. ISBN 9781118984772. [Google Scholar] [CrossRef]
- Kilic, M.S.; Bazant, M.Z.; Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages: I. Double-layer charging. Phys. Rev. E 2007, 75, 021502. [Google Scholar] [CrossRef] [Green Version]
- Pham, P.; Howorth, M.; Planat-Chrétien, A.; Tardu, S. Numerical Simulation of the Electrical Double Layer Based on the Poisson-Boltzmann Models for AC Electroosmosis Flows. In Proceedings of the COMSOL Users Conference, Grenoble, France, 23–24 October 2007. [Google Scholar]
- van Hal, R.E.G.; Eijkel, J.C.T.; Bergveld, P. A general model to describe the electrostatic potential at electrolyte oxide interface. Adv. Colloid. Interface Sci. 1996, 69, 31–62. [Google Scholar] [CrossRef] [Green Version]
- Yates, D.E.; Levine, S.; Healy, T.W. Site-Binding Model of the Electrical Double Layer at the Oxide/Water Interface. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1974, 1807–1818. [Google Scholar] [CrossRef]
- Afzalian, A.; Pourtois, G. ATOMOS: An ATomistic MOdelling Solver for dissipative DFT transport in ultra-scaled HfS2 and Black phosphorus MOSFETs. In Proceedings of the 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Udine, Italy, 4–6 September 2019. [Google Scholar] [CrossRef]
- Afzalian, A. Ab initio perspective of ultra-scaled CMOS from 2D-material fundamentals to dynamically doped transistors. Npj 2D Mater. Appl. 2021, 5, 5. [Google Scholar] [CrossRef]
- Reckinger, N.; Tang, X.; Dubois, E.; Larrieu, G.; Flandre, D.; Raskin, J.-P.; Afzalian, A. Low temperature tunneling current enhancement in silicide/Si Schottky contacts with nanoscale barrier width. Appl. Phys. Lett. 2011, 98, 112102. [Google Scholar] [CrossRef] [Green Version]
- Mahan, G.D. Many-Particle Physics; Plenum Press: New York, NY, USA, 1988. [Google Scholar]
- Afzalian, A.; Vasen, T.; Ramvall, P.; Shen, T.-M.; Wu, J.; Passlack, M. Physics and performance of III-V nanowire broken-gap heterojunction TFETs using an efficient tight-binding mode-space NEGF model enabling million-atom nanowire simulations. J. Phys. Condens. Matter 2018, 30, 254002. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Nair, P.; Scott, A.; Alam, M.A.; Janes, D.B. Device considerations for development of conductance-based biosensors. J. Appl. Phys. 2009, 105, 102046. [Google Scholar] [CrossRef]
- Tarasov, A.; Wipf, M.; Bedner, K.; Kurz, J.; Fu, W.; Guzenko, V.A.; Knopfmacher, O.; Stoop, R.L.; Calame, M.; Schönenberger, C. A True Reference Nanosensor Realized with Silicon Nanowires. Langmuir 2012, 28, 9899. [Google Scholar] [CrossRef]
- Woo, J.-M.; Kim, S.H.; Park, Y.J. Transient State in the Affinity-Based Biosensor: A Simulation and Experimental Study. In Proceedings of the SISPAD 2012, Denver, CO, USA, 5–7 September 2012; pp. 177–180. [Google Scholar]
- Liu, Y.; Lilja, K.; Heitzinger, C.; Dutton, R.W. Overcoming the screening-induced performance limits of nanowire biosensors: A simulation study on the effect of electro-diffusion flow. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008; pp. 491–494. [Google Scholar]
- Lee, C.; Chen, Y.-W.; Lu, M.S.-C. CMOS Biosensors for the Detection of DNA Hybridization in High Ionic-Strength Solutions. IEEE Sens. J. 2021, 21, 4135–4142. [Google Scholar] [CrossRef]
- Kamenetskii, M.D. Biophysics of the DNA molecule. Phys. Rep. 1997, 288, 13–60. [Google Scholar] [CrossRef]
- Cuervo, A.; Dans, P.D.; Carrascosa, J.L.; Orozco, M.; Gomila, G.; Fumagalli, L. Direct measurement of the dielectric polarization properties of DNA. Proc. Nat. Acad. Sci. USA 2014, 111, E3624–E3630. [Google Scholar] [CrossRef] [Green Version]
- Knopfmacher, O.; Tarasov, A.; Fu, W.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 2010, 10, 2268–2274. [Google Scholar] [CrossRef] [PubMed]
- Go, J.; Nair, P.R.; Alam, M.A. Theory of signal and noise in double-gated nanoscale electronic pH sensors. J. Appl. Phys. 2012, 112, 034516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzalian, A.; Lee, C.W.; Dehdashti-Akhavan, N.; Yan, R.; Ferain, I.; Colinge, J.P. Quantum Confinement Effects in Capacitance Behavior of Multigate Silicon Nanowire MOSFETs. IEEE Trans. Nanotechnol. 2011, 10, 300–309. [Google Scholar] [CrossRef]
- Rajan, N.K.; Routenberg, D.A.; Reed, M.A. Optimal signal-to-noise ratio for silicon nanowire biochemical sensors. Appl. Phys. Lett. 2011, 98, 264107. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, A.; Fu, W.; Knopfmacher, O.; Brunner, J.; Calame, M.; Schönenberger, C. Signal-to-noise ratio in dual-gated silicon nanoribbon field-effect sensors. Appl. Phys. Lett. 2011, 98, 012114. [Google Scholar] [CrossRef] [Green Version]
- Zafari, L.; Jomaah, J.; Ghibaudo, G. Low frequency noise in multi-gate SOI CMOS devices. Solid-State Electron. 2007, 51, 292–298. [Google Scholar] [CrossRef]
- Ghibaudo, G.; Roux, O.; Nguyen-Duc, C.; Balestra, F.; Brini, J. Improved Analysis of Low Frequency Noise in Field-Effect MOS Transistors. Phys. Status Solidi A 1991, 124, 571–581. [Google Scholar] [CrossRef]
- Jayaraman, R.; Sodini, C.G. A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon. IEEE Trans. Electron. Devices 1989, 36, 1773–1782. [Google Scholar] [CrossRef]
Biasing Scheme | |σID| [%] | ΔVTH (mV) | SNR |
---|---|---|---|
VG = VFG VBKG = 0 V | 16 | 10 | 11 |
VG = VFG VBKG floating | 30 | 7.5 | 6.1 |
VG = VBKG EOTBOX = 0.5nm | 18 | 8.7 | 5 |
VG = VBKG EOTBOX = 10 nm | 32 | 118 | 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzalian, A.; Flandre, D. Ultra-Scaled Si Nanowire Biosensors for Single DNA Molecule Detection. Sensors 2023, 23, 5405. https://doi.org/10.3390/s23125405
Afzalian A, Flandre D. Ultra-Scaled Si Nanowire Biosensors for Single DNA Molecule Detection. Sensors. 2023; 23(12):5405. https://doi.org/10.3390/s23125405
Chicago/Turabian StyleAfzalian, Aryan, and Denis Flandre. 2023. "Ultra-Scaled Si Nanowire Biosensors for Single DNA Molecule Detection" Sensors 23, no. 12: 5405. https://doi.org/10.3390/s23125405
APA StyleAfzalian, A., & Flandre, D. (2023). Ultra-Scaled Si Nanowire Biosensors for Single DNA Molecule Detection. Sensors, 23(12), 5405. https://doi.org/10.3390/s23125405