A Suboptimal Optimizing Strategy for Velocity Vector Estimation in Single-Observer Passive Localization
Abstract
:1. Introduction
2. Preliminaries
2.1. Model and Observations
2.2. Kalman Filtering
3. Analysis and Proposed Method
3.1. Gradient Descent Correction
3.2. Simulated Annealing Mechanism
- Initialize the temperature .
- Start with a randomly generated initial solution vector and generate the objective function, such as Equation (15).
- Add a random perturbation and generate a new solution vector in the neighborhood of current solution vector , and revalue the output of the objective function.
- If the generated solution vector is archived, make it the current solution vector. Update the existing optimal solution and go to Step 6.
- Otherwise, accept with the probability . If the solution is accepted, replace with .
- Decrease the temperature with cooling coefficient . The new temperature , where .
- Repeat Steps 2–6 until the stopping criterion is met.
3.3. Analysis of Optimization Process
3.4. Our Method
Algorithm 1 Pseudocode of the proposed algorithm |
|
4. Simulation
4.1. Simulation Scenario
4.2. Error Distribution
4.3. Simulation Parameters
4.4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, T.; Cheng, Y. Research on High-Precision Extraction of Phase Difference Change Rate in Single Observer Passive Location. In Proceedings of the 2017 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China, 21–23 July 2017. [Google Scholar] [CrossRef]
- Bai, J.; Li, X.; Hu, S.; Su, C.; Lei, H.; Qian, W.; Zhang, C.; Zenebe, Y.A. Single Platform Passive Location Algorithm Using Position Information and Azimuth. In Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 27–37. [Google Scholar] [CrossRef]
- Zhou, T.; Cheng, Y.; Wu, T. Single Observer Passive Location Using Phase Difference Rate. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 421–430. [Google Scholar] [CrossRef]
- Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, E. Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications. IEEE Commun. Surv. Tutor. 2017, 19, 1327–1346. [Google Scholar] [CrossRef] [Green Version]
- Khelifi, F.; Bradai, A.; Benslimane, A.; Rawat, P.; Atri, M. A Survey of Localization Systems in Internet of Things. Mob. Netw. Appl. 2018, 24, 761–785. [Google Scholar] [CrossRef]
- Shang, J.; Hu, X.; Gu, F.; Wang, D.; Yu, S. Improvement Schemes for Indoor Mobile Location Estimation: A Survey. Math. Probl. Eng. 2015, 2015, 397298. [Google Scholar] [CrossRef] [Green Version]
- Roth, M.; Hendeby, G.; Fritsche, C.; Gustafsson, F. The Ensemble Kalman filter: A signal processing perspective. EURASIP J. Adv. Signal Process. 2017, 2017, 56. [Google Scholar] [CrossRef] [Green Version]
- Li, T.J.; Zhou, W.S.; Zhu, A.H.; Che, Z.Y.; Song, Z.Y. Study on Airborne Single Passive Location Technology. Appl. Mech. Mater. 2011, 58–60, 2006–2011. [Google Scholar] [CrossRef]
- Wang, J.; Luo, X. Research on Airborne Passive Location Based on Extend Kalman Filter with Control Inputs. In Proceedings of the 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), Beijing, China, 8–10 July 2016. [Google Scholar] [CrossRef]
- Qiu, L.B.; Su, H.Y.; Hu, H.; Huang, S.L.; Wang, J.; Li, T.J. Application of UKF Algorithm in Airborne Single Observer Passive Location. Adv. Mater. Res. 2011, 267, 356–362. [Google Scholar] [CrossRef]
- Fang, H.; Tian, N.; Wang, Y.; Zhou, M.; Haile, M.A. Nonlinear Bayesian estimation: From Kalman filtering to a broader horizon. IEEE/CAA J. Autom. Sin. 2018, 5, 401–417. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.B.; Jeremiah, R.J.R.; Su, T.L.; Bai, Y.T.; Kong, J.L. The New Trend of State Estimation: From Model-Driven to Hybrid-Driven Methods. Sensors 2021, 21, 2085. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, Z. A Low SNR and Fast Passive Location Algorithm Based on Virtual Time Reversal. IEEE Access 2021, 9, 29303–29311. [Google Scholar] [CrossRef]
- Song, K.K.; Yang, Y.X.; Peng, H.F. Direct Location for Multiple Passive Radars without and with Reference. J. Phys. Conf. Ser. 2019, 1169, 012024. [Google Scholar] [CrossRef]
- Jwo, D.J.; Cho, T.S. Critical remarks on the linearised and extended Kalman filters with geodetic navigation examples. Measurement 2010, 43, 1077–1089. [Google Scholar] [CrossRef]
- Kulikov, G.Y.; Kulikova, M.V. SVD-Based Factored-Form Extended Kalman Filters for State Estimation in Nonlinear Continuous-Discrete Stochastic Systems. In Proceedings of the 2019 23rd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 9–11 October 2019; pp. 137–142. [Google Scholar]
- Sun, A.; Jia, W.; Hei, D.; Cheng, C.; Li, J. Gamma ray full spectral analysis method optimization of an ill-conditioned problem. Eur. Phys. J. Plus 2022, 137, 929. [Google Scholar] [CrossRef]
- Zhang, A.; Atia, M.M. An efficient tuning framework for Kalman filter parameter optimization using design of experiments and genetic algorithms. NAVIGATION 2020, 67, 775–793. [Google Scholar] [CrossRef]
- Singh, S.; Ashok, A.; Rawat, T.K. Optimal Volterra-based nonlinear system identification using arithmetic optimization algorithm assisted with Kalman filter. Evol. Syst. 2022, 14, 117–139. [Google Scholar] [CrossRef]
- Xue, H. Adaptive Cultural Algorithm-Based Cuckoo Search for Time-Dependent Vehicle Routing Problem with Stochastic Customers Using Adaptive Fractional Kalman Speed Prediction. Math. Probl. Eng. 2020, 2020, 7258780. [Google Scholar] [CrossRef]
- Wu, H.; Liang, L.; Mei, X.; Zhang, Y. A Convex Optimization Approach For NLOS Error Mitigation in TOA-Based Localization. IEEE Signal Process. Lett. 2022, 29, 677–681. [Google Scholar] [CrossRef]
- Quirini, A.; Blasone, G.P.; Colone, F.; Lombardo, P. Non-Uniform Linear Arrays for Target Detection and DoA Estimation in Passive Radar STAP. In Proceedings of the 2022 23rd International Radar Symposium (IRS), Gdansk, Poland, 12–14 September 2022; pp. 224–228. [Google Scholar]
- Kim, J. Hybrid TOA–DOA techniques for maneuvering underwater target tracking using the sensor nodes on the sea surface. Ocean Eng. 2021, 242, 110110. [Google Scholar] [CrossRef]
- Li, Y.Y.; Qi, G.Q.; Sheng, A.D. Performance Metric on the Best Achievable Accuracy for Hybrid TOA/AOA Target Localization. IEEE Commun. Lett. 2018, 22, 1474–1477. [Google Scholar] [CrossRef]
- Shin, D.; Onizawa, N.; Gross, W.J.; Hanyu, T. Memory-Efficient FPGA Implementation of Stochastic Simulated Annealing. IEEE J. Emerg. Sel. Top. Circuits Syst. 2023, 13, 108–118. [Google Scholar] [CrossRef]
- Sun, B.; Luo, J.; Wu, S.; Liu, Y. The Location Technology Research on Single Pulse Active Location Cooperate with Passive Location. In Proceedings of the 6th International Conference on Information Engineering for Mechanics and Materials, Huhhot, China, 30–31 July 2016; pp. 684–690. [Google Scholar]
- Yang, C.; Gao, Z.; Miao, Y.; Kan, T. Study on initial value problem for fractional-order cubature Kalman filters of nonlinear continuous-time fractional-order systems. Nonlinear Dyn. 2021, 105, 2387–2403. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y.; Zhang, H. Recent Advances in Stochastic Gradient Descent in Deep Learning. Mathematics 2023, 11, 682. [Google Scholar] [CrossRef]
Scenario | v | a | N | ||||||
---|---|---|---|---|---|---|---|---|---|
Scenario 1 | [0.5, 0.5, 0.2] km | [92, 86, 5] m | 0.1 | 0 m/s | 0.2 m | 1000 | 100 | ||
Scenario 2 | [(0, 1), (0, 1), (0, 1)] km | [(0, 0.1), (0, 0.1), (0, 0.1)] km/s | (0.3, 0.5) | 0 m/s | 0.2 to 1 m | 500 | 1000 | ||
Scenario 3 | [(0, 1), (0, 1), (0, 1)] km | [(0, 0.1), (0, 0.1), (0, 0.1)] km/s | (0.3, 0.5) | 2.5 m/s | 0.2 to 1 m | 500 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, S.; Luo, Z.; Chu, Y.; Xu, Y.; Guo, J. A Suboptimal Optimizing Strategy for Velocity Vector Estimation in Single-Observer Passive Localization. Sensors 2023, 23, 5940. https://doi.org/10.3390/s23135940
Gu S, Luo Z, Chu Y, Xu Y, Guo J. A Suboptimal Optimizing Strategy for Velocity Vector Estimation in Single-Observer Passive Localization. Sensors. 2023; 23(13):5940. https://doi.org/10.3390/s23135940
Chicago/Turabian StyleGu, Shuyi, Zhenghua Luo, Yingjun Chu, Yanghui Xu, and Junxiong Guo. 2023. "A Suboptimal Optimizing Strategy for Velocity Vector Estimation in Single-Observer Passive Localization" Sensors 23, no. 13: 5940. https://doi.org/10.3390/s23135940
APA StyleGu, S., Luo, Z., Chu, Y., Xu, Y., & Guo, J. (2023). A Suboptimal Optimizing Strategy for Velocity Vector Estimation in Single-Observer Passive Localization. Sensors, 23(13), 5940. https://doi.org/10.3390/s23135940