0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs
Abstract
:1. Introduction
2. Proposed Circuit
2.1. CMOS Structure of the Multiple-Input DDTA
2.2. Proposed Voltage-Mode First-Order Versatile Analog Filter
2.3. Non-Ideality Analysis
3. Application Example
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smith, K.; Sedra, A. The current conveyor—A new circuit building block. Proc. IEEE 1968, 56, 1368–1369. [Google Scholar] [CrossRef]
- Chiu, W.; Liu, S.-I.; Tsao, H.-W.; Chen, J.-J. CMOS differential difference current conveyors and their applications. IEE Proc.-Circuits Devices Syst. 1996, 143, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Sackinger, E.; Guggenbuhl, W. A versatile building block: The CMOS differential difference amplifier. IEEE J. Solid-state Circuits 1987, 22, 287–294. [Google Scholar] [CrossRef]
- Pandey, N.; Paul, S.K. Differential Difference Current Conveyor Transconductance Amplifier: A New Analog Building Block for Signal Processing. J. Electr. Comput. Eng. 2011, 2011, 361384. [Google Scholar] [CrossRef]
- Kumngern, M. DDTA and DDCCTA: New active elements for analog signal processing. In Proceedings of the 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA), Kuala Lumpur, Malaysia, 5–6 November 2012; pp. 141–145. [Google Scholar] [CrossRef]
- Jantakun, A.; Pisutthipong, N.; Siripruchyanun, M. A synthesis of temperature insensitive/electronically controllable floating simulators based on DV-CCTAs. In Proceedings of the 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Chonburi, Thailand, 6–9 May 2009; pp. 560–563. [Google Scholar] [CrossRef]
- Kumngern, M.; Suksaibul, P.; Khateb, F.; Kulej, T. 1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter. Sensors 2022, 22, 3535. [Google Scholar] [CrossRef]
- Kumngern, M.; Khateb, F.; Kulej, T. 0.5 V Universal Filter and Quadrature Oscillator Based on Multiple-Input DDTA. IEEE Access 2023, 11, 9957–9966. [Google Scholar] [CrossRef]
- Khateb, F.; Kumngern, M.; Kulej, T.; Biolek, D. 0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter. IEEE Access 2022, 10, 43209–43220. [Google Scholar] [CrossRef]
- Khateb, F.; Kumngern, M.; Kulej, T.; Biolek, D. 0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator. Sensors 2022, 22, 2655. [Google Scholar] [CrossRef]
- Kulej, T.; Kumngern, M.; Khateb, F.; Arbet, D. 0.5 V Versatile Voltage- and Transconductance-Mode Analog Filter Using Differential Difference Transconductance Amplifier. Sensors 2023, 23, 688. [Google Scholar] [CrossRef]
- Khateb, F.; Kumngern, M.; Kulej, T.; Ranjan, R.K. 0.5 V multiple-input multiple-output differential difference transconductance amplifier and its applications to shadow filter and oscillator. IEEE Access 2023, 11, 31212–31227. [Google Scholar] [CrossRef]
- Palani, R.K.; Sturm, M.; Harjani, R. A 1.56mW 50MHz 3rd-order filter with current-mode active-RC biquad and 33dBm IIP3 in 65nm CMOS. In Proceedings of the 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, 11–13 November 2013; pp. 373–376. [Google Scholar] [CrossRef]
- Hanumantha, G.R.; Sreenivasulu, P.; Rekha, S.; Bhat, M.S. A 0.3-V, 2.4-nW, and 100-Hz fourth-order LPF for ECG signal processing. Int. J. Circuit Theory Appl. 2020, 48, 1853–1863. [Google Scholar] [CrossRef]
- Abuan, D.D.; Perez, G.F.; Medrano, M.B.; Velasco, C.P. Wide Bandpass Filter Composed of First-order and Second-Order Active High Pass Filters Simulated Using MATLAB and Multisim Live. In Proceedings of the 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, 10–12 October 2022; pp. 403–408. [Google Scholar] [CrossRef]
- Isaksen, J.; Leber, R.; Schmid, R.; Schmid, H.-J.; Generali, G.; Abacherli, R. The first-order high-pass filter influences the automatic measurements of the electrocardiogram. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 784–788. [Google Scholar] [CrossRef]
- Comer, D.; Gonzalez, J. A high-frequency integrable bandpass filter configuration. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1997, 44, 856–861. [Google Scholar] [CrossRef]
- Gift, S. The application of all-pass filters in the design of multiphase sinusoidal systems. Microelectron. J. 2000, 31, 9–13. [Google Scholar] [CrossRef]
- Garakoui, S.K.; Klumperink, E.A.M.; Nauta, B.; Vanvliet, F.E. Frequency Limitations of First-Order gm−RC All-Pass Delay Circuits. IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 572–576. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.; Ramirez-Angulo, J.; Lopez-Martin, A.J.; Carvajal, R.G. CMOS First-Order All-Pass Filter With 2-Hz Pole Frequency. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 27, 294–303. [Google Scholar] [CrossRef]
- Li, Y.-A. A series of new circuits based on CFTAs. AEU-Int. J. Electron. Commun. 2012, 66, 587–592. [Google Scholar] [CrossRef]
- Kumar, A.; Paul, S.K. Current mode first order universal filter and multiphase sinusoidal oscillator. AEU-Int. J. Electron. Commun. 2017, 81, 37–49. [Google Scholar] [CrossRef]
- Maheshwari, S. Tuning approach for first-order filters and new current-mode circuit example. IET Circuits Devices Syst. 2018, 12, 478–485. [Google Scholar] [CrossRef]
- Chaturvedi, B.; Mohan, J.; Jitender; Kumar, A. A Novel Realization of Current-Mode First Order Universal Filter. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2–3 February 2017; pp. 623–627. [Google Scholar] [CrossRef]
- Horng, J.-W.; Wu, C.-M.; Zheng, J.-H.; Li, S.-Y. Current-Mode First-Order Highpass, Lowpass, and Allpass Filters Using Two ICCIIs. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), Taoyuan, Taiwan, 28–30 September 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Yucel, F. A DVCC-Based Current-Mode First-Order Universal Filter. J. Circuits Syst. Comput. 2021, 30, 2150305. [Google Scholar] [CrossRef]
- Yuce, E.; Minaei, S. A new first-order universal filter consisting of two ICCII + s and a grounded capacitor. AEU-Int. J. Electron. Commun. 2021, 137, 153802. [Google Scholar] [CrossRef]
- Herencsar, N.; Koton, J.; Sagbas, M.; Ayten, U.E. New tunable resistorless CM first-order filter based on single CBTA and grounded capacitor. In Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 16–19 October 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Safari, L.; Yuce, E.; Minaei, S. A new ICCII based resistor-less current-mode first-order universal filter with electronic tuning capability. Microelectron. J. 2017, 67, 101–110. [Google Scholar] [CrossRef]
- Agrawal, D.; Maheshwari, S. An Active-C Current-Mode Universal First-Order Filter and Oscillator. J. Circuits Syst. Comput. 2019, 28, 1950219. [Google Scholar] [CrossRef]
- Chaturvedi, B.; Kumar, A.; Mohan, J. Low Voltage Operated Current-Mode First-Order Universal Filter and Sinusoidal Oscillator Suitable for Signal Processing Applications. AEU-Int. J. Electron. Commun. 2018, 99, 110–118. [Google Scholar] [CrossRef]
- Singh, P.; Varshney, V.; Kumar, A.; Nagaria, R. Electronically Tunable First Order Universal Filter based on CCDDCCTA. In Proceedings of the 2019 IEEE Conference on Information and Communication Technology, Allahabad, India, 6–8 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Chaturvedi, B.; Mohan, J.; Jitender; Kumar, A. Resistorless Realization of First-Order Current Mode Universal Filter. Radio Sci. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Mohan, J.; Chaturvedi, B. Jitender CMOS Compatible First-Order Current Mode Universal Filter Structure and its Possible Tunable Variant. J. Circuits Syst. Comput. 2022, 31, 2250242. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S.; Elkamchouchi, D.H.; Urooj, S. Fully Differential Current-Mode Configuration for the Realization of First-Order Filters with Ease of Cascadability. Electronics 2022, 11, 2072. [Google Scholar] [CrossRef]
- Myderrizi, I.; Minaei, S.; Yuce, E. An Electronically Fine-Tunable Multi-Input–Single-Output Universal Filter. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 356–360. [Google Scholar] [CrossRef]
- Abaci, A.; Yuce, E. Voltage-mode first-order universal filter realizations based on subtractors. AEU-Int. J. Electron. Commun. 2018, 90, 140–146. [Google Scholar] [CrossRef]
- Banerjee, K.; Bnadopadhyaya, P.K.; Sarkar, B.; Biswas, A. Multi Input Single Output using Operational Transresistance Amplifier as First Order Filter. In Proceedings of the 2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS), Kolkata, India, 18–19 July 2020; pp. 271–274. [Google Scholar] [CrossRef]
- Kumari, S.; Nand, D. DDCC-based MISO type Voltage-mode First-order Universal Filter. In Proceedings of the 2022 2nd International Conference on Intelligent Technologies (CONIT), Hubli, India, 24–26 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Dogan, M.; Yuce, E. A first-order universal filter including a grounded capacitor and two CFOAs. Analog. Integr. Circuits Signal Process. 2022, 112, 379–390. [Google Scholar] [CrossRef]
- Chinpark, K.; Jaikla, W.; Siripongdee, S.; Suwanjan, P. Electronically controllable first-order multifuntion filter with using single active building block. In Proceedings of the 2018 3rd International Conference on Control and Robotics Engineering (ICCRE), Nagoya, Japan, 20–23 April 2018; pp. 192–195. [Google Scholar] [CrossRef]
- Moonmuang, P.; Pukkalanun, T.; Tangsrirat, W. Voltage differencing buffered amplifier-based electronically tunable grounded capacitance multiplier. In Proceedings of the 8th International Conference on Informatics, Environment, Energy and Applications, Osaka, Japan, 16–19 March 2019; pp. 208–211. [Google Scholar] [CrossRef]
- Jaikla, W.; Talabthong, P.; Siripongdee, S.; Supavarasuwat, P.; Suwanjan, P.; Chaichana, A. Electronically controlled voltage mode first order multifunction filter using low-voltage low-power bulk-driven OTAs. Microelectron. J. 2019, 91, 22–35. [Google Scholar] [CrossRef]
- Jaikla, W.; Buakhong, U.; Siripongdee, S.; Khateb, F.; Sotner, R.; Silapan, P.; Suwanjan, P.; Chaichana, A. Single Commercially Available IC-Based Electronically Controllable Voltage-Mode First-Order Multifunction Filter with Complete Standard Functions and Low Output Impedance. Sensors 2021, 21, 7376. [Google Scholar] [CrossRef]
- Barile, G.; Safari, L.; Pantoli, L.; Stornelli, V.; Ferri, G. Electronically Tunable First Order AP/LP and LP/HP Filter Topologies Using Electronically Controllable Second Generation Voltage Conveyor (CVCII). Electronics 2021, 10, 822. [Google Scholar] [CrossRef]
- Duangmalai, D.; Suwanjan, P. The voltage-mode first order universal filter using single voltage differencing differential input buffered amplifier with electronic controllability. Int. J. Electr. Comput. Eng. (IJECE) 2022, 12, 1308–1323. [Google Scholar] [CrossRef]
- Singh, P.; Nagaria, R.K. Voltage mode and trans-admittance mode first-order universal filters employing DV-EXCCCII. Aust. J. Electr. Electron. Eng. 2022, 19, 396–406. [Google Scholar] [CrossRef]
- Dogan, M.; Yuce, E.; Dicle, Z. CFOA-based first-order voltage-mode universal filters. AEU-Int. J. Electron. Commun. 2023, 161, 154550. [Google Scholar] [CrossRef]
- Chaturvedi, B.; Kumar, A. Electronically Tunable First-Order Filters and Dual-Mode Multiphase Oscillator. Circuits Syst. Signal Process. 2018, 38, 2–25. [Google Scholar] [CrossRef]
- Rohilla, K.; Pushkar, K.L.; Kumar, R.; Raj, A. Resistorless First-Order Universal Filter Structures Employing OTAs with Independent Controllability of Gain and Pole Frequency. IETE J. Res. 2022, 1–21. [Google Scholar] [CrossRef]
- Raj, A.; Bhaskar, D.R.; Senani, R.; Kumar, P. Extension of recently proposed two-CFOA-GC all pass filters to the realisation of first order universal active filters. AEU-Int. J. Electron. Commun. 2022, 146, 154119. [Google Scholar] [CrossRef]
- Raj, A. Mixed-Mode Electronically-Tunable First-Order Universal Filter Structure Employing Operational Transconductance Amplifiers. J. Circuits Syst. Comput. 2022, 31, 2250234. [Google Scholar] [CrossRef]
- Bhaskar, D.R.; Raj, A.; Senani, R.; Kumar, P. CFOA-based simple mixed-mode first-order universal filter configurations. Int. J. Circuit Theory Appl. 2022, 50, 2631–2641. [Google Scholar] [CrossRef]
- Roongmuanpha, N.; Likhitkitwoerakul, N.; Fukuhara, M.; Tangsrirat, W. Single VDGA-Based Mixed-Mode Electronically Tunable First-Order Universal Filter. Sensors 2023, 23, 2759. [Google Scholar] [CrossRef] [PubMed]
- Varol, A.; Yucel, F.; Cakir, A. A New Electronically Tunable Transimpedance-Mode OTA-Based First-Order Universal Filter and Its Quadrature Oscillator Application. J. Circuits Syst. Comput. 2022. [Google Scholar] [CrossRef]
- Kulej, T. 0.4-V Bulk-Driven Operational Amplifier with Improved Input Stage. Circuits Syst. Signal Process. 2014, 34, 1167–1185. [Google Scholar] [CrossRef]
- Kulej, T.; Khateb, F. Design and implementation of sub 0.5-V OTAs in 0.18-μm CMOS. Int. J. Circuit Theory Appl. 2018, 46, 1129–1143. [Google Scholar] [CrossRef]
- Kulej, T.; Khateb, F.; Arbet, D.; Stopjakova, V. A 0.3-V High Linear Rail-to-Rail Bulk-Driven OTA in 0.13 μm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2046–2050. [Google Scholar] [CrossRef]
- Khateb, F.; Kumngern, M.; Kulej, T. 0.5-V Nano-Power Voltage-Mode First-Order Universal Filter Based on Multiple-Input OTA. IEEE Access 2023, 11, 49806–49818. [Google Scholar] [CrossRef]
Filtering Function | Input | Transfer Function | ||
---|---|---|---|---|
LP | Non-inverting | |||
Inverting | ||||
HP | Non-inverting | |||
Inverting | ||||
AP | Non-inverting (Phase leg) | |||
Inverting (Phase lead) |
Device | W/L (µm/µm) |
---|---|
M1A, M2A, M1B, M2B | 20/3 |
M7, M8 | 15/3 |
M3–M6, MB | 10/3 |
M9 | 6 × 10/3 |
M10 | 6 × 20/3 |
MR | 5/3 |
MIM capacitor: CB = 0.2 pF, Cc = 4 pF | |
Poly-resistor R = 90 kΩ |
Features | Proposed | [29] 2017 | [44] 2021 | [46] 2022 | [51] 2022 | [54] 2023 | [59] 2023 |
---|---|---|---|---|---|---|---|
Active and passive elements | 2 DDTA, 1 C, 1 R | 2 ICCII, 1 C, 1 MOS Figure 4 | 1 LT1228, 1 C, 2 R | 1 VD-DIBA, 1 C, 2 R | 2 CFOA, 1 C, 4 R Figure 1d | 1 VGA, 1 C, 1 R | 2 OTA, 1 C |
Realization | CMOS structure (0.13 μm) | CMOS structure (0.13 μm) | Commercial IC (LT1228) | Commercial IC (LT1228, AD830) | Commercial IC (AD844) | CMOS structure (0.18 μm) | CMOS structure (0.18 μm) |
Mode operation | VM | CM | VM | VM | VM | MM | VM |
Type of filter | MISO | SIMO | MISO | MISO | MISO | MIMO | MISO |
Number of filtering functions | 6 (LP+, LP−, HP+, HP−, AP+, AP−) | 6 (LP+, LP−, HP+, HP−, AP+, AP−) | 4 (LP+, HP+, AP+, AP−) | 4 (LP−, HP−, AP+, AP−) | 3 (LP−, HP+, AP+) | 3 (LP+, HP+, AP+) | 6 (LP+, LP−, HP+, HP−, AP+, AP−) |
High-input impedance | Yes | - | No | No | Yes | No | Yes |
Electronic control of parameter | Yes | Yes | Yes | Yes | No | Yes | Yes |
Control of gain | Yes | No | Yes (LP, HP) | Yes (LP, HP) | Yes | No | No |
Using grounded capacitor/resistor | Yes | No | No | No | No | No | Yes |
Pole frequency (kHz) | 0.195 | 2600 | 90 | 159.15 | 159 | 1590 | 0.220 |
Total harmonic distortion (%) | 1.024@50 mVpp | <1.5@90 μApp | 1@200 mVpp | <1@150 mVpp | - | - | 0.36@40 mVpp |
Supply voltage (V) | 0.3 | ±0.75 | ±5 | ±5 | ±12 | ±0.9 | 0.5 |
Power dissipation (µW) | 0.7148 | 4080 | 57,600 | - | - | - | 59.5 × 10−3 |
FoM (µW/kHz) | 3.66 | 1.56 | 640 | - | - | - | 0.27 |
Verification of result | Sim. | Sim. | Exp. | Exp. | Exp. | Sim/Exp | Post-layout Sim. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumngern, M.; Khateb, F.; Kulej, T.; Steffan, P. 0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs. Sensors 2023, 23, 5945. https://doi.org/10.3390/s23135945
Kumngern M, Khateb F, Kulej T, Steffan P. 0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs. Sensors. 2023; 23(13):5945. https://doi.org/10.3390/s23135945
Chicago/Turabian StyleKumngern, Montree, Fabian Khateb, Tomasz Kulej, and Pavel Steffan. 2023. "0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs" Sensors 23, no. 13: 5945. https://doi.org/10.3390/s23135945
APA StyleKumngern, M., Khateb, F., Kulej, T., & Steffan, P. (2023). 0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs. Sensors, 23(13), 5945. https://doi.org/10.3390/s23135945