Energy Criticality Avoidance-Based Delay Minimization Ant Colony Algorithm for Task Assignment in Mobile-Server-Assisted Mobile Edge Computing
Abstract
:1. Introduction
- We build a mobile-server-assisted edge computing framework where tasks can be offloaded onto local fixed edge servers, remote fixed servers, or mobile servers.
- We formulate the task offloading problem for delay minimization as a mixed-integer programming (MIP) problem and prove its NP-hardness.
- We design a dynamic energy-criticality-based ant colony algorithm to address the above problem. We present a detailed algorithm design and deduce its computational complexity.
- We conduct extensive simulations, and the results show the high performance of the proposed algorithm as compared with benchmark algorithms.
2. Related Work Literature Review
3. System Model and Problem Formulation
3.1. Network Model
3.2. Delay Model
- Directly offloaded onto the local fixed edge server for processing;
- Offloaded onto a mobile server in the same cell via the relaying of its associated base station n via two hops of wireless cellular network link (Note that D2D connection is not considered in the scenario studied in this paper);
- Offloaded onto a remote fixed edge server via the relaying of its associated base station n via one-hop wireless link of accessing n and one-hop wired link to the remote fixed edge server;
- Offloaded onto a remote mobile server via path “local base station–remote base station–remote mobile server” via the concatenation of wireless link and wired link.
3.3. Energy Consumption Model
3.4. Problem Formulation
4. Proposed EACO Algorithm
4.1. Directed Multistage Graph Construction and Transition Probability Calculation
4.2. Pheromone Initialization and Updating
4.3. Dynamic Energy Criticality Avoidance
4.4. Ant-Colony-Based Task Assignment
Algorithm 1: EACO for task assignment. |
5. Performance Evaluation
5.1. Simulation Settings
5.2. Algorithms for Comparison
- Mobile-server-assisted MEC network: The architecture under study in this paper;
- MEC network without assistance: In this architecture, only fixed edge servers are used to provide offloading services, without any assistance from mobile servers.
- Random assignment (RandM): Each task is assigned randomly to a server for processing;
- Minimum workload first assignment (GreedyW): Each task is assigned to the server , whose workload is the minimum among all choices;
- Minimum delay first assignment (GreedyW): Each task is assigned to the server , whose resulting delay is the minimum among all choices.
5.3. Simulation Results
5.3.1. The Impact of Number of Ants
5.3.2. The Impact of Energy Protection Threshold
5.3.3. Comparison of Performance of Two Architectures
5.3.4. Comparison of Performance in Terms of Energy Protection
5.3.5. Impact of Number of Users
5.3.6. Comparison of Performance of Different Algorithms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Di, B.; Wang, P.; Lin, J.; Song, L. HetMEC: Heterogeneous multi-layer mobile edge computing in the 6 G era. IEEE Trans. Veh. Technol. 2020, 69, 4388–4400. [Google Scholar] [CrossRef]
- Yang, H.; Liang, Y.; Yuan, J.; Yao, Q.; Yu, A.; Zhang, J. Distributed blockchain-based trusted multidomain collaboration for mobile edge computing in 5G and beyond. IEEE Trans. Ind. Inform. 2020, 16, 7094–7104. [Google Scholar] [CrossRef]
- Abbas, M.; Matti, S.; Antti, Y.J. Edge computing assisted adaptive mobile video streaming. IEEE Trans. Mob. Comput. 2018, 18, 787–800. [Google Scholar]
- Chen, C.; Liu, B.; Wan, S.; Qiao, P.; Pei, Q. An edge traffic flow detection scheme based on deep learning in an intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 2020, 99, 1840–1852. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, K.; Tan, Z.; Song, H.; Li, X. Vehicular Computation Offloading for Industrial Mobile Edge Computing. IEEE Trans. Ind. Inform. 2021, 17, 7871–7881. [Google Scholar] [CrossRef]
- Wang, S.; Ding, C.; Zhang, N.; Liu, X.; Shen, X.S. A Cloud-Guided Feature Extraction Approach for Image Retrieval in Mobile Edge Computing. IEEE Trans. Mob. Comput. 2021, 20, 292–305. [Google Scholar] [CrossRef]
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of Things in the 5G Era: Enablers, Architecture, and Business Models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef] [Green Version]
- Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2017–2022. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html (accessed on 10 March 2020).
- Martin-Perez, J.; Cominardi, L.; Bernardos, C.J.; Antonio, D.; Azcorra, A. Modeling mobile edge computing deployments for low latency multimedia services. IEEE Trans. Broadcast. 2019, 65, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [Google Scholar] [CrossRef] [Green Version]
- Fajardo, J.O.; Liberal, F.; Giannoulakis, I.; Kafetzakis, E.; Pii, V.; Trajkovska, I.; Bohnert, T.M.; Goratti, L.; Riggio, R.; Lloreda, J.G.; et al. Introducing mobile edge computing capabilities through distributed 5g cloud enabled small cells. Mob. Netw. Appl. 2016, 21, 564–574. [Google Scholar] [CrossRef] [Green Version]
- Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681. [Google Scholar] [CrossRef] [Green Version]
- Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Ylianttila, M. A Survey on Mobile Augmented Reality With 5G Mobile Edge Computing: Architectures, Applications, and Technical Aspects. IEEE Commun. Surv. Tutor. 2021, 23, 1160–1192. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Y.; Dong, H.; Jin, H. Mobility and dependence-aware QoS monitoring in mobile edge computing. IEEE Trans. Cloud Comput. 2021, 9, 1143–1157. [Google Scholar] [CrossRef]
- Li, Q.; Wang, S.; Zhou, A.; Ma, X.; Yang, F.; Liu, A.X. QoS driven task offloading with statistical guarantee in mobile edge computing. IEEE Trans. Mob. Comput. 2020, 21, 278–290. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, B.; Li, C. Platform Profit Maximization on Service Provisioning in Mobile Edge Computing. IEEE Trans. Veh. Technol. 2021, 70, 13364–13376. [Google Scholar] [CrossRef]
- Li, J.; Liang, W.; Xu, W.; Xu, Z.; Jia, X.; Zhou, W.; Zhao, J. Maximizing User Service Satisfaction for Delay-Sensitive IoT Applications in Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 1199–1212. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, Z.; Feng, J.; Qin, Z.; Xie, Y. Efficient deployment of multi-uav assisted mobile edge computing: A cost and energy perspective. Trans. Emerg. Telecommun. Technol. 2022, 33, 4453–4470. [Google Scholar] [CrossRef]
- Zhu, S.; Souri, A. Blockchain technology for energy-aware mobile crowd sensing approaches in internet of things. Trans. Emerg. Telecommun. Technol. 2021, 1, 1–14. [Google Scholar]
- Pang, Y.; Wu, J.; Chen, L.; Yao, M. Energy balancing for multiple devices with multiple tasks in mobile edge computing. J. Front. Comput. Sci. Technol. 2022, 16, 480–488. [Google Scholar]
- Chen, Y.; Zhao, F.; Lu, Y.; Chen, X. Dynamic task offloading for mobile edge computing with hybrid energy supply. Tsinghua Sci. Technol. 2022, 28, 421–432. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, H.; Hong, J.; Xi, L.; Leung, V. An efficient computation offloading management scheme in the densely deployed small cell networks with mobile edge computing. IEEE/ACM Trans. Netw. 2018, 26, 2651–2664. [Google Scholar] [CrossRef]
- Jošilo, S.; Dán, G. Computation offloading scheduling for periodic tasks in mobile edge computing. IEEE Trans. Veh. Technol. 2020, 28, 667–680. [Google Scholar]
- Zhao, J.; Li, Q.; Gong, Y.; Zhang, K. Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks. IEEE Trans. Veh. Technol. 2019, 68, 7944–7956. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, D.; Zhang, T.; Zhang, J.; Piao, M. A novel offloading scheduling method for mobile application in mobile edge computing. Wirel. Netw. 2022, 28, 2345–2363. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, Y.; Zhu, Y.; Tong, W.; Yang, Y. Online computation offloading and resource scheduling in mobile-edge computing. IEEE Internet Things J. 2021, 8, 6649–6664. [Google Scholar] [CrossRef]
- Zhao, F.; Chen, Y.; Zhang, Y.; Liu, Z.; Chen, X. Dynamic offloading and resource scheduling for mobile-edge computing with energy harvesting devices. IEEE Trans. Netw. Serv. Manag. 2021, 18, 2154–2165. [Google Scholar] [CrossRef]
- Alameddine, H.A.; Sharafeddine, S.; Sebbah, S.; Ayoubi, S.; Assi, C. Dynamic task offloading and scheduling for low-latency IoT services in multi-access edge computing. IEEE J. Sel. Areas Commun. 2019, 37, 668–682. [Google Scholar] [CrossRef]
- Peng, J.; Qiu, H.; Cai, J.; Xu, W.; Wang, J. D2D-Assisted Multi-User Cooperative Partial Offloading, Transmission Scheduling and Computation Allocating for MEC. IEEE Trans. Wirel. Commun. 2021, 20, 4858–4873. [Google Scholar] [CrossRef]
- Fang, T.; Yuan, F.; Ao, L.; Chen, J. Joint task offloading, D2D pairing and resource allocation in device-enhanced MEC: A potential game approach. IEEE Internet Things J. 2022, 9, 3226–3237. [Google Scholar] [CrossRef]
- Huang, X.; Yu, R.; Ye, D.; Shu, L.; Xie, S. Efficient Workload Allocation and User-Centric Utility Maximization for Task Scheduling in Collaborative Vehicular Edge Computing. IEEE Trans. Veh. Technol. 2021, 70, 3773–3787. [Google Scholar] [CrossRef]
- Zeng, F.; Chen, Q.; Meng, L.; Wu, J. Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge Computing. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3247–3257. [Google Scholar] [CrossRef]
- Ma, C.; Zhu, J.; Liu, M.; Zhao, H.; Zou, X. Parking Edge Computing: Parked-Vehicle-Assisted Task Offloading for Urban VANETs. IEEE Internet Things J. 2021, 8, 9344–9358. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, L.; Jin, C.; Wang, J.; Liao, Z.; Luo, Y. An UAV-assisted mobile edge computing offloading strategy for minimizing energy consumption. Comput. Netw. 2022, 207, 108857. [Google Scholar] [CrossRef]
- Dai, B.; Niu, J.; Ren, T.; Hu, Z.; Atiquzzaman, M. Towards energy-efficient scheduling of UAV and base station hybrid enabled mobile edge computing. IEEE Trans. Veh. Technol. 2021, 71, 915–930. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.Y.; Min, L.; Tang, C.; Zhang, H.Y.; Wang, Y.H.; Cai, P. Task offloading and trajectory control for UAV-assisted mobile edge computing using deep reinforcement learning. IEEE Access 2021, 9, 53708–53719. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, G.; Wang, M.; Duan, W.; Wen, M.; Ho, P.H. UAV-aided energy-efficient edge computing networks: Security offloading optimization. IEEE Internet Things J. 2021, 9, 4245–4258. [Google Scholar] [CrossRef]
- Hekmati, A.; Teymoori, P.; Todd, T.D.; Zhao, D. Optimal mobile computation offloading with hard deadline constraints. IEEE Trans. Mob. Comput. 2019, 19, 2160–2173. [Google Scholar] [CrossRef]
- Deng, R.; Lu, R.; Lai, C.; Luan, T.H.; Liang, H. Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J. 2016, 3, 1171–1181. [Google Scholar] [CrossRef]
- Yi, C.; Cai, J.; Su, Z. A multi-user mobile computation offloading and transmission scheduling mechanism for delay-sensitive applications. IEEE Trans. Mob. Comput. 2019, 19, 29–43. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Ning, Z.; Ngai, E.C.H.; Zhou, L.; Wei, J.; Cheng, J.; Hu, B.; Leung, V.C.M. Joint resource allocation for latency-sensitive services over mobile edge computing networks with caching. IEEE Internet Things J. 2018, 6, 4283–4294. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, Z.; Di, B.; Song, L. HetMEC: Latency-optimal task assignment and resource allocation for heterogeneous multi-layer mobile edge computing. IEEE Trans. Wirel. Commun. 2019, 18, 4942–4956. [Google Scholar] [CrossRef]
- Wang, P.; Yao, C.; Zheng, Z.; Sun, G.; Song, L. Joint task assignment, transmission, and computing resource allocation in multilayer mobile edge computing systems. EEE Internet Things J. 2019, 6, 2872–2884. [Google Scholar] [CrossRef]
- Sonmez, C.; Ozgovde, A.; Ersoy, C. EdgeCloudSim: An environment for performance evaluation of edge computing systems. Eur. Trans. Telecommun. 2018, 11, 29. [Google Scholar] [CrossRef]
Notations | Definitions |
---|---|
Binary variable indicating whether task is assigned to server for processing | |
Computation workload, data size and arriving time of task | |
The total delay of task from its offloading to being processed at server | |
Set of users | |
Set of fixed edge servers | |
“Set of all mobile servers” and “set of mobile servers associated with base station n in time cycle t”, respectively | |
Binary variables indicating whether user k and mobile server m are associated with base station n in time cycle t, respectively | |
Set of all edge servers, including both fixed servers and mobile servers | |
The delay that task experienced at server , which includes the queuing delay and processing delay | |
Transmission delay experienced by task on the way from user k to server | |
Set of tasks arrived in time cycle t | |
Initial energy of mobile server m | |
Energy consumed for mobile server m to process task | |
Residual energy of mobile server m at the beginning of time cycle t | |
The amount of energy required to be reserved at mobile server m for its own use | |
Computing capacity of server s, | |
Transition probability for ant b to choose vertex in the gth round | |
Pheromone value of vertex in the gth round | |
Pheromone-value-related factor | |
Heuristic factor | |
Number of ants and number of iterations, respectively | |
, | Binary variables indicating whether the system is starting to transmit task at time via wireless and wired links of server s, respectively |
, | Binary variables indicating the transmission sequence of task and task |
EACO | ACO | EACO-0 | Optimal Parameters |
---|---|---|---|
1 | 675% | 103% | , |
EACO | GreedyT | GreedyW | RandM |
1 | 253% | 277% | 309% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Lei, B.; Ji, G.; Zhang, B. Energy Criticality Avoidance-Based Delay Minimization Ant Colony Algorithm for Task Assignment in Mobile-Server-Assisted Mobile Edge Computing. Sensors 2023, 23, 6041. https://doi.org/10.3390/s23136041
Huang X, Lei B, Ji G, Zhang B. Energy Criticality Avoidance-Based Delay Minimization Ant Colony Algorithm for Task Assignment in Mobile-Server-Assisted Mobile Edge Computing. Sensors. 2023; 23(13):6041. https://doi.org/10.3390/s23136041
Chicago/Turabian StyleHuang, Xiaoyao, Bo Lei, Guoliang Ji, and Baoxian Zhang. 2023. "Energy Criticality Avoidance-Based Delay Minimization Ant Colony Algorithm for Task Assignment in Mobile-Server-Assisted Mobile Edge Computing" Sensors 23, no. 13: 6041. https://doi.org/10.3390/s23136041
APA StyleHuang, X., Lei, B., Ji, G., & Zhang, B. (2023). Energy Criticality Avoidance-Based Delay Minimization Ant Colony Algorithm for Task Assignment in Mobile-Server-Assisted Mobile Edge Computing. Sensors, 23(13), 6041. https://doi.org/10.3390/s23136041