Particle Swarm Algorithm Path-Planning Method for Mobile Robots Based on Artificial Potential Fields
Abstract
:1. Introduction
- First, a particle swarm algorithm based on sorting optimization was proposed. By dynamically adjusting the inertia weight and sorting the position vectors of particles, the global and local optimization ability of the algorithm was balanced and the search performance of the algorithm was enhanced.
- Second, the artificial potential field method was introduced to combine this method with the improved particle swarm algorithm, improve the convergence speed and accuracy of the algorithm, and make the optimal path found more in line with actual needs.
- Third, this study conducted a comparative analysis of various path algorithms, demonstrated the effectiveness of the proposed algorithm, and experimentally analyzed the influence of the number of algorithm populations on the optimization effect, obtaining a suitable number of population settings.
2. Environmental Modeling and Problem Formulation
3. Methodology
3.1. Particle Swarm Optimization
- (1)
- Assign initial random positions and velocities to all particles in the search space.
- (2)
- Evaluate the fitness of each particle.
- (3)
- Update the individual and global best positions.
- (4)
- Update the velocity and position of each particle.
3.2. The Proposed Algorithm
3.2.1. Particle Swarm Algorithm Based on Ranking
3.2.2. Particle Swarm Path-Planning Algorithm Based on Artificial Potential Fields
4. Numerical Experiments
4.1. Classic Terrain Validation
4.2. Algorithm Comparison Analysis
4.3. Population Change study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Population Size | Length 1 | Length 2 | Time 1 (s) | Time 2 (s) |
---|---|---|---|---|
100 | 24.21 | 20.56 | 28.22 | 12.04 |
200 | 22.56 | 19.73 | 57.09 | 27.70 |
300 | 21.73 | 20.31 | 89.10 | 38.60 |
400 | 23.14 | 19.73 | 125.58 | 54.10 |
500 | 19.73 | 19.73 | 152.06 | 66.73 |
600 | 20.31 | 19.73 | 174.14 | 75.86 |
700 | 20.90 | 20.56 | 214.96 | 94.95 |
800 | 20.56 | 19.73 | 233.38 | 108.10 |
900 | 21.14 | 19.73 | 235.70 | 127.11 |
1000 | 20.90 | 19.73 | 246.64 | 141.32 |
1100 | 21.49 | 19.73 | 267.44 | 150.59 |
1200 | 20.31 | 19.73 | 343.31 | 169.89 |
1300 | 19.73 | 19.73 | 346.77 | 174.88 |
1400 | 19.73 | 19.73 | 476.88 | 210.73 |
1500 | 22.56 | 19.73 | 487.63 | 205.53 |
1600 | 20.31 | 19.73 | 551.38 | 263.06 |
References
- Brancalião, L.; Gonçalves, J.; Conde, M.; Costa, P. Systematic Mapping Literature Review of Mobile Robotics Competitions. Sensors 2022, 22, 2160. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Elangovan, D.; Govindarajan, P.L.; ELnaggar, M.F.; Alrashed, M.M.; Kamel, S. A Comprehensive Review of Path Planning for Agricultural Ground Robots. Sustain 2022, 14, 9156. [Google Scholar] [CrossRef]
- Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.C. Path smoothing techniques in robot navigation: State-of-the-art, current and future challenges. Sensors 2018, 18, 3170. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ibáñez, J.R.; Pérez-Del-pulgar, C.J.; García-Cerezo, A. Path planning for autonomous mobile robots: A review. Sensors 2021, 21, 7898. [Google Scholar] [CrossRef]
- Sugihara, K.; Smith, J. Genetic algorithms for adaptive motion planning of an autonomous mobile robot. In Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97, Monterey, CA, USA, 10–11 July 1997; pp. 138–143. [Google Scholar] [CrossRef]
- Bai, X.; Fielbaum, A.; Kronmuller, M.; Knoedler, L.; Alonso-Mora, J. Group-Based Distributed Auction Algorithms for Multi-Robot Task Assignment. IEEE Trans. Autom. Sci. Eng. 2022, 20, 1292–1303. [Google Scholar] [CrossRef]
- Bai, X.; Li, C.; Li, C.; Khan, A.; Zhang, T.; Zhang, B. Multi-robot task assignment for serving people quarantined in multiple hotels during COVID-19 pandemic. Quant. Imaging Med. Surg. 2023, 13, 1802–1813. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Yan, W.; Cao, M.; Xue, D. Distributed multi-vehicle task assignment in a time-invariant drift field with obstacles. IET Control Theory Appl. 2019, 13, 2886–2893. [Google Scholar] [CrossRef]
- Bai, X.; Yan, W.; Cao, M. Clustering-Based Algorithms for Multivehicle Task Assignment in a Time-Invariant Drift Field. IEEE Robot. Autom. Lett. 2017, 2, 2166–2173. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, G.; Zheng, Q.; Bai, X.; Ding, Y.; Khan, A. Path Planning for Wheeled Mobile Robot in Partially Known Uneven Terrain. Sensors 2022, 22, 5217. [Google Scholar] [CrossRef]
- Cipriani, G.; Bottin, M.; Rosati, G.; Faccio, M. A Radial Basis Functions approach to collision avoidance in collaborative tasks. IFAC-PapersOnLine 2022, 55, 307–312. [Google Scholar] [CrossRef]
- Gul, F.; Mir, I.; Abualigah, L.; Sumari, P.; Forestiero, A. A consolidated review of path planning and optimization techniques: Technical perspectives and future directions. Electron 2021, 10, 2250. [Google Scholar] [CrossRef]
- Jian, Z.; Zhang, S.; Chen, S.; Nan, Z.; Zheng, N. A Global-Local Coupling Two-Stage Path Planning Method for Mobile Robots. IEEE Robot. Autom. Lett. 2021, 6, 5349–5356. [Google Scholar] [CrossRef]
- Qi, Z.; Wang, T.; Chen, J.; Narang, D.; Wang, Y.; Yang, H. Learning-based Path Planning and Predictive Control for Autonomous Vehicles with Low-Cost Positioning. IEEE Trans. Intell. Veh. 2022, 8, 1093–1104. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, R.; Pan, Y.; Wang, Y.; Wang, Y.; Guan, X.; Hao, J.; Zhang, J.; Li, G. A Robust Reference Path Selection Method for Path Planning Algorithm. IEEE Robot. Autom. Lett. 2022, 7, 4837–4844. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, Y.; Li, N. An Autoselection Strategy of Multiobjective Evolutionary Algorithms Based on Performance Indicator and its Application. IEEE Trans. Autom. Sci. Eng. 2022, 19, 2422–2436. [Google Scholar] [CrossRef]
- Patle, B.K.; Babu, L.G.; Pandey, A.; Parhi, D.R.K.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile robot. Def. Technol. 2019, 15, 582–606. [Google Scholar] [CrossRef]
- Burman, R.; Chakrabarti, S.; Das, S. Democracy-inspired particle swarm optimizer with the concept of peer groups. Soft Comput. 2017, 21, 3267–3286. [Google Scholar] [CrossRef]
- Zhao, C.; Guo, D. Particle Swarm Optimization Algorithm with Self-Organizing Mapping for Nash Equilibrium Strategy in Application of Multiobjective Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5179–5193. [Google Scholar] [CrossRef]
- Yu, Z.; Si, Z.; Li, X.; Wang, D.; Song, H. A Novel Hybrid Particle Swarm Optimization Algorithm for Path Planning of UAVs. IEEE Internet Things J. 2022, 9, 22547–22558. [Google Scholar] [CrossRef]
- Pozna, C.; Precup, R.E.; Horvath, E.; Petriu, E.M. Hybrid Particle Filter-Particle Swarm Optimization Algorithm and Application to Fuzzy Controlled Servo Systems. IEEE Trans. Fuzzy Syst. 2022, 30, 4286–4297. [Google Scholar] [CrossRef]
- Mohammed Hussein, H.; Katzis, K.; Mfupe, L.P.; Bekele, E.T. Performance Optimization of High-Altitude Platform Wireless Communication Network Exploiting TVWS Spectrums Based on Modified PSO. IEEE Open J. Veh. Technol. 2022, 3, 356–366. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D.; Zhang, T.; Zhang, J.; Wang, J. A new path plan method based on hybrid algorithm of reinforcement learning and particle swarm optimization. Eng. Comput. 2022, 39, 993–1019. [Google Scholar] [CrossRef]
- Raheem, F.A.; Badr, M.M. Development of Modified path planning algorithm using artificial potential field (APF) based on PSO for factors optimization. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 37, 316–328. [Google Scholar]
- Janglova, D. Neural Networks in Mobile Robot Motion. Cut. Edge Robot. 2005, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Li, F.F.; Du, Y.; Jia, K.J. Path planning and smoothing of mobile robot based on improved artificial fish swarm algorithm. Sci. Rep. 2022, 12, 1–16. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, C.; Zhang, W.; Fang, C.; Xia, Y.; Liu, Y.; Dong, H. Object-Based Reliable Visual Navigation for Mobile Robot. Sensors 2022, 22, 2387. [Google Scholar] [CrossRef]
- Wagner, N.R. The Sofa Problem. Am. Math. Mon. 1976, 83, 188. [Google Scholar] [CrossRef]
- Jung, J.H.; Kim, D.H. Local path planning of a mobile robot using a novel grid-based potential method. Int. J. Fuzzy Log. Intell. Syst. 2020, 20, 26–34. [Google Scholar] [CrossRef]
- Fang, Z.; Liang, X. Intelligent obstacle avoidance path planning method for picking manipulator combined with artificial potential field method. Ind. Rob. 2022, 49, 835–850. [Google Scholar] [CrossRef]
- Lozano-Pérez, T. Spatial Planning: A Configuration Space Approach. IEEE Trans. Comput. 1983, C–32, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Véras, L.G.D.O.; Medeiros, F.L.L.; Guimarães, L.N.F. Rapidly exploring Random Tree* with a sampling method based on Sukharev grids and convex vertices of safety hulls of obstacles. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419825941. [Google Scholar] [CrossRef] [Green Version]
- Dahiya, R.; Singh, A. A Survey on Application of Particle Swarm Optimization in Text Mining Abstract. Int. J. Innov. Res. Dev. 2014, 3, 101–107. [Google Scholar]
- Zhang, Y.; Wang, S.; Ji, G. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications. Math. Probl. Eng. 2015, 2015, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Singh, S.B. Personal Best Position Particle Swarm Optimization 1. J. Appl. Comput. Sci. Math. 2012, 12, 69–76. [Google Scholar]
- Abedi Pahnehkolaei, S.M.; Alfi, A.; Tenreiro Machado, J.A. Analytical stability analysis of the fractional-order particle swarm optimization algorithm. Chaos Solitons Fractals 2022, 155, 111658. [Google Scholar] [CrossRef]
- Yuan, Q.; Sun, R.; Du, X. Path Planning of Mobile Robots Based on an Improved Particle Swarm Optimization Algorithm. Processes 2022, 11, 26. [Google Scholar] [CrossRef]
Item | Environment 1 | Environment 2 | Environment 3 | Environment 4 |
---|---|---|---|---|
rPSO | 27.21 | 24.97 | 22.14 | 21.14 |
apfrPSO | 24.38 | 21.56 | 19.31 | 19.73 |
Item | Environment 1 | Environment 2 | Environment 3 | Environment 4 |
---|---|---|---|---|
rPSO(s) | 20.67 | 14.39 | 15.14 | 17.12 |
apfrPSO(s) | 10.44 | 6.89 | 7.49 | 7.38 |
Item | Environment 1 | Environment 2 | Environment 3 | Environment 4 |
---|---|---|---|---|
rPSO | 146 | 24 | 71 | 44 |
apfrPSO | 36 | 30 | 2 | 48 |
Item | Environment 1 | Environment 2 | Environment 3 | Environment 4 | ||||
---|---|---|---|---|---|---|---|---|
Length | Iters | Length | Iters | Length | Iters | Length | Iters | |
DAFSA | 28.32 | 91 | 26.46 | 68 | 25.67 | 78 | 24.12 | 75 |
IDAFSA | 26.43 | 76 | 23.75 | 46 | 22.48 | 46 | 22.16 | 64 |
IPSO-IDE | 24.49 | 43 | 21.24 | 38 | 20.16 | 10 | 19.24 | 53 |
apfrPSO | 24.38 | 36 | 21.56 | 30 | 19.31 | 2 | 19.73 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Yu, W.; Li, G.; Qin, G.; Luo, Y. Particle Swarm Algorithm Path-Planning Method for Mobile Robots Based on Artificial Potential Fields. Sensors 2023, 23, 6082. https://doi.org/10.3390/s23136082
Zheng L, Yu W, Li G, Qin G, Luo Y. Particle Swarm Algorithm Path-Planning Method for Mobile Robots Based on Artificial Potential Fields. Sensors. 2023; 23(13):6082. https://doi.org/10.3390/s23136082
Chicago/Turabian StyleZheng, Li, Wenjie Yu, Guangxu Li, Guangxu Qin, and Yunchuan Luo. 2023. "Particle Swarm Algorithm Path-Planning Method for Mobile Robots Based on Artificial Potential Fields" Sensors 23, no. 13: 6082. https://doi.org/10.3390/s23136082
APA StyleZheng, L., Yu, W., Li, G., Qin, G., & Luo, Y. (2023). Particle Swarm Algorithm Path-Planning Method for Mobile Robots Based on Artificial Potential Fields. Sensors, 23(13), 6082. https://doi.org/10.3390/s23136082