Machine Learning Approaches in Brillouin Distributed Fiber Optic Sensors
Abstract
:1. Introduction
2. Brillouin Distributed Fiber Optic Sensors (DFOSs)
3. Machine Learning Applied in Brillouin Time Domain Sensors
3.1. Machine Learning for Feature Extraction from the Brillouin Gain Spectrum
3.2. Machine Learning for Denoising the Brillouin Gain Spectrum
3.3. Machine Learning for Temperature and Strain Predictions Directly from the Brillouin Gain Spectrum
4. Machine Learning Applied in Brillouin Frequency Domain Sensors
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | artificial neural network |
BOTDA | Brillouin time domain analysis |
BOTDR | Brillouin time domain reflectometry |
BOFDA | Brillouin frequency domain analysis |
BOFDR | Brillouin frequency domain reflectometry |
BOCDA | Brillouin correlation domain analysis |
BOCDR | Brillouin correlation domain reflectometry |
BFS | Brillouin frequency shift |
BGS | Brillouin gain spectrum |
BM3D | block-matching and 3D filtering |
CNN | convolutional neural network |
CPU | central processing unit |
DOFS | distributed fiber optic sensors |
ELM | extreme learning machine |
GLM | generalized linear model |
GPR | Gaussian process regression |
GPU | graphics processing unit |
IFFT | inverse fast Fourier transformation |
IoT | internet of things |
K-ELM | kernel extreme learning machine |
KNN | k-nearest neighbors |
LCF | Lorentzian curve fitting |
LEAF | large effective area fiber |
MSE | mean square error |
NLM | non-local means |
PCA | principal component analysis |
RF | random forest |
RMSE | root mean square error |
SNR | signal-to-noise ratio |
SVM | support vector machines |
WD | wavelet denoising |
XCM | cross-correlation method |
References
- Ecke, W.; Nöther, N.; Peters, K.J.; Wosniok, A.; Krebber, K.; Meyendorf, N.G.; Thiele, E. A distributed fiber optic sensor system for dike monitoring using Brillouin optical frequency domain analysis. In Proceedings of the Smart Sensor Phenomena, Technology, Networks, and Systems, San Diego, CA, USA, 10–12 March 2008. [Google Scholar]
- Schenato, L. A Review of Distributed Fibre Optic Sensors for Geo-Hydrological Applications. Appl. Sci. 2017, 7, 896. [Google Scholar] [CrossRef] [Green Version]
- Bado, M.F.; Casas, J.R. A Review of Recent Distributed Optical Fiber Sensors Applications for Civil Engineering Structural Health Monitoring. Sensors 2021, 21, 1818. [Google Scholar] [CrossRef] [PubMed]
- Monsberger, C.M.; Bauer, P.; Buchmayer, F.; Lienhart, W. Large-scale distributed fiber optic sensing network for short and long-term integrity monitoring of tunnel linings. J. Civ. Struct. Health 2022, 12, 1317–1327. [Google Scholar] [CrossRef]
- Wu, T.; Liu, G.; Fu, S.; Xing, F. Recent Progress of Fiber-Optic Sensors for the Structural Health Monitoring of Civil Infrastructure. Sensors 2020, 20, 4517. [Google Scholar] [CrossRef] [PubMed]
- Stajanca, P.; Chruscicki, S.; Homann, T.; Seifert, S.; Schmidt, D.; Habib, A. Detection of Leak-Induced Pipeline Vibrations Using Fiber—Optic Distributed Acoustic Sensing. Sensors 2018, 18, 2841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, H.; Araki, E.; Kimura, T.; Fujie, G.; Shiraishi, K.; Tonegawa, T.; Obana, K.; Arai, R.; Kaiho, Y.; Nakamura, Y.; et al. Detection of hydroacoustic signals on a fiber-optic submarine cable. Sci. Rep. 2021, 11, 2797. [Google Scholar] [CrossRef]
- Fang, G.; Li, Y.E.; Zhao, Y.; Martin, E.R. Urban Near-Surface Seismic Monitoring Using Distributed Acoustic Sensing. Geophys. Res. Lett. 2020, 47, e2019GL086115. [Google Scholar] [CrossRef] [Green Version]
- Sladen, A.; Rivet, D.; Ampuero, J.P.; De Barros, L.; Hello, Y.; Calbris, G.; Lamare, P. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 2019, 10, 5777. [Google Scholar] [CrossRef] [Green Version]
- Spica, Z.J.; Perton, M.; Martin, E.R.; Beroza, G.C.; Biondi, B. Urban Seismic Site Characterization by Fiber-Optic Seismology. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018656. [Google Scholar] [CrossRef] [Green Version]
- Masoudi, A.; Pilgrim, J.A.; Newson, T.P.; Brambilla, G. Subsea Cable Condition Monitoring with Distributed Optical Fiber Vibration Sensor. J. Light. Technol. 2019, 37, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- Min, R.; Liu, Z.; Pereira, L.; Yang, C.; Sui, Q.; Marques, C. Optical fiber sensing for marine environment and marine structural health monitoring: A review. Opt. Laser Technol. 2021, 140, 107082. [Google Scholar] [CrossRef]
- Thomas, P.J.; Hellevang, J.O. A fully distributed fibre optic sensor for relative humidity measurements. Sens. Actuators B Chem. 2017, 247, 284–289. [Google Scholar] [CrossRef]
- Stajanca, P.; Hicke, K.; Krebber, K. Distributed Fiberoptic Sensor for Simultaneous Humidity and Temperature Monitoring Based on Polyimide-Coated Optical Fibers. Sensors 2019, 19, 5279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, C.; Korposh, S.; Correia, R.; Liu, L.; Hayes-Gill, B.R.; Morgan, S.P. Optical fibre sensor for simultaneous temperature and relative humidity measurement: Towards absolute humidity evaluation. Sens. Actuators B Chem. 2021, 344, 130154. [Google Scholar] [CrossRef]
- Schenato, L.; Galtarossa, A.; Pasuto, A.; Palmieri, L. Distributed optical fiber pressure sensors. Opt. Fiber Technol. 2020, 58, 102239. [Google Scholar] [CrossRef]
- Jaroszewicz, L.R.; Kusche, N.; Schukar, V.; Hofmann, D.; Basedau, F.; Habel, W.; Woschitz, H.; Lienhart, W. Field examples for optical fibre sensor condition diagnostics based on distributed fibre optic strain sensing. In Proceedings of the 5th European Workshop on Optical Fibre Sensors, Cracow, Poland, 19–22 May 2013. [Google Scholar]
- Stajanca, P.; Mihai, L.; Sporea, D.; Neguţ, D.; Sturm, H.; Schukar, M.; Krebber, K. Effects of gamma radiation on perfluorinated polymer optical fibers. Opt. Mater. 2016, 58, 226–233. [Google Scholar] [CrossRef]
- Stajanca, P.; Krebber, K. Radiation-Induced Attenuation of Perfluorinated Polymer Optical Fibers for Radiation Monitoring. Sensors 2017, 17, 1959. [Google Scholar] [CrossRef] [Green Version]
- Lewis, E.; Wosniok, A.; Sporea, D.; Neguţ, D.; Krebber, K. Gamma radiation influence on silica optical fibers measured by optical backscatter reflectometry and Brillouin sensing technique. In Proceedings of the 6th European Workshop on Optical Fibre Sensors, Limerick, Ireland, 31 May–3 June 2016. [Google Scholar]
- Rizzolo, S.; Boukenter, A.; Ouerdane, Y.; Michalon, J.-Y.; Marin, E.; Macé, J.-R.; Girard, S. Distributed and discrete hydrogen monitoring through optical fiber sensors based on optical frequency domain reflectometry. J. Phys. Photonics 2020, 2, 14009. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, F.; He, X.; Jin, W.; Zhang, M.; Yang, F.; Ho, H.L.; Tan, Y.; Gu, L. Distributed gas sensing with optical fibre photothermal interferometry. Opt. Express 2017, 25, 31568–31585. [Google Scholar] [CrossRef]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Taranov, M.A.; Gorshkov, B.G.; Alekseev, A.E. Achievement of an 85 km Distance Range of Strain (Temperature) Measurements Using Low-Coherence Rayleigh Reflectometry. Instrum. Exp. Tech. 2020, 63, 527–531. [Google Scholar] [CrossRef]
- Lu, Z.; Feng, T.; Li, F.; Yao, X.S. Optical Frequency-Domain Reflectometry Based Distributed Temperature Sensing Using Rayleigh Backscattering Enhanced Fiber. Sensors 2023, 23, 5748. [Google Scholar] [CrossRef]
- Pedraza, A.; del Río, D.; Bautista-Juzgado, V.; Fernández-López, A.; Sanz-Andrés, Á. Study of the Feasibility of Decoupling Temperature and Strain from a ϕ-PA-OFDR over an SMF Using Neural Networks. Sensors 2023, 23, 5515. [Google Scholar] [CrossRef]
- Palmieri, L.; Schenato, L.; Santagiustina, M.; Galtarossa, A. Rayleigh-Based Distributed Optical Fiber Sensing. Sensors 2022, 22, 6811. [Google Scholar] [CrossRef]
- Bernini, R.; Minardo, A.; Zeni, L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering. Opt. Lett. 2009, 34, 2613–2615. [Google Scholar] [CrossRef]
- Voskoboinik, A.; Yilmaz, O.F.; Willner, A.W.; Tur, M. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA). Opt. Express 2011, 19, B842–B847. [Google Scholar] [CrossRef]
- Zhou, D.; Dong, Y.; Wang, B.; Pang, C.; Ba, D.; Zhang, H.; Lu, Z.; Li, H.; Bao, X. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement. Light Sci. Appl. 2018, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Minardo, A.; Porcaro, G.; Giannetta, D.; Bernini, R.; Zeni, L. Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors. Appl. Opt. 2013, 52, 3770–3776. [Google Scholar] [CrossRef]
- Motil, A.; Bergman, A.; Tur, M. [INVITED] State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol. 2016, 78, 81–103. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Z.; Hong, X.; Jin, S.; Luo, J.; Soto, M.A.; Wu, J. Ultra-long Brillouin optical time-domain analyzer based on distortion compensating pulse and hybrid lumped–distributed amplification. APL Photonics 2022, 7, 126107. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Li, J.; Zeng, J.; Li, Y.; Jia, X.; Rao, Y. Ultra-long dual-sideband BOTDA with balanced detection. Opt. Laser Technol. 2015, 68, 206–210. [Google Scholar] [CrossRef]
- Soto, M.A.; Bolognini, G.; Di Pasquale, F. Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification. Opt. Express 2011, 19, 4444–4457. [Google Scholar] [CrossRef] [Green Version]
- Denisov, A.; Soto, M.A.; Thévenaz, L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: Theoretical analysis and experimental demonstration. Light Sci. Appl. 2016, 5, e16074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernini, R.; Minardo, A.; Zeni, L. Distributed Sensing at Centimeter-Scale Spatial Resolution by BOFDA: Measurements and Signal Processing. IEEE Photonics J. 2012, 4, 48–56. [Google Scholar] [CrossRef]
- Sperber, T.; Eyal, A.; Tur, M.; Thévenaz, L. High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing. Opt. Express 2010, 18, 8671–8679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garus, D.; Gogolla, T.; Krebber, K.; Schliep, F. Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis. Opt. Lett. 1996, 21, 1402–1404. [Google Scholar] [CrossRef]
- Jayawickrema, U.M.N.; Herath, H.M.C.M.; Hettiarachchi, N.K.; Sooriyaarachchi, H.P.; Epaarachchi, J.A. Fibre-optic sensor and deep learning-based structural health monitoring systems for civil structures: A review. Measurement 2022, 199, 111543. [Google Scholar] [CrossRef]
- Kandamali, D.F.; Cao, X.; Tian, M.; Jin, Z.; Dong, H.; Yu, K. Machine learning methods for identification and classification of events in ϕ-OTDR systems: A review. Appl. Opt. 2022, 61, 2975–2997. [Google Scholar] [CrossRef]
- Shiloh, L.; Eyal, A.; Giryes, R. Efficient Processing of Distributed Acoustic Sensing Data Using a Deep Learning Approach. J. Light. Technol. 2019, 37, 4755–4762. [Google Scholar] [CrossRef]
- Ohodnicki, P.R.; Zhang, P.; Lalam, N.; Karki, D.; Venketeswaran, A.; Babaee, H.; Wright, R. Fusion of Distributed Fiber Optic Sensing, Acoustic NDE, and Artificial Intelligence for Infrastructure Monitoring. In Proceedings of the 27th International Conference on Optical Fiber Sensors, Alexandria, VA, USA, 29 August–2 September 2022. [Google Scholar]
- Shiloh, L.; Eyal, A.; Giryes, R. Deep Learning Approach for Processing Fiber-Optic DAS Seismic Data. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar]
- Shi, Y.; Wang, Y.; Wang, L.; Zhao, L.; Fan, Z. Multi-event classification for Φ-OTDR distributed optical fiber sensing system using deep learning and support vector machine. Optik 2020, 221, 165373. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Zhao, L.; Fan, Z. An Event Recognition Method for Φ-OTDR Sensing System Based on Deep Learning. Sensors 2019, 19, 3421. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Jian, J.; Wen, H.; Gribok, A.; Wang, M.; Liu, H.; Huang, S.; Mao, Z.-H.; Chen, K.P. Distributed fiber sensor and machine learning data analytics for pipeline protection against extrinsic intrusions and intrinsic corrosions. Opt. Express 2020, 28, 27277–27292. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Peng, R.; Liu, Z. A surveillance system for urban buried pipeline subject to third-party threats based on fiber optic sensing and convolutional neural network. Struct. Health Monit. 2020, 20, 1704–1715. [Google Scholar] [CrossRef]
- Bai, Y.; Xing, J.; Xie, F.; Liu, S.; Li, J. Detection and identification of external intrusion signals from 33 km optical fiber sensing system based on deep learning. Opt. Fiber Technol. 2019, 53, 102060. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Liu, X.; Xiao, Y.; Wang, M.; Yang, M.; Rao, Y. A Real-Time Distributed Deep Learning Approach for Intelligent Event Recognition in Long Distance Pipeline Monitoring with DOFS. In Proceedings of the 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Zhengzhou, China, 18–20 October 2018; pp. 290–2906. [Google Scholar]
- Wu, Z.; Wang, Q.; Gribok, A.V.; Chen, K.P. Pipeline Degradation Evaluation Based on Distributed Fiber Sensors and Convolutional Neural Networks (CNNs). In Proceedings of the 27th International Conference on Optical Fiber Sensors, Alexandria, VA, USA, 29 August–2 September 2022. [Google Scholar]
- Wang, Q.; Jian, J.; Wang, M.; Wu, J.; Mao, Z.-H.; Gribok, A.V.; Chen, K.P. Pipeline Defects Detection and Classification Based on Distributed Fiber Sensors and Neural Networks. In Optical Fiber Sensors Conference 2020 Special Edition; Optica Publishing Group: Washington, DC, USA, 2020. [Google Scholar]
- Wu, H.; Chen, J.; Liu, X.; Xiao, Y.; Wang, M.; Zheng, Y.; Rao, Y. One-Dimensional CNN-Based Intelligent Recognition of Vibrations in Pipeline Monitoring with DAS. J. Light. Technol. 2019, 37, 4359–4366. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Wang, M.; Zhong, Y.; Peng, F. Fiber distributed acoustic sensing using convolutional long short-term memory network: A field test on high-speed railway intrusion detection. Opt. Express 2020, 28, 2925–2938. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, H.; Li, L.; Liang, J.; Wang, X.; Lu, B.; Ye, Q.; Qu, R.; Cai, H. Practical multi-class event classification approach for distributed vibration sensing using deep dual path network. Opt. Express 2019, 27, 23682–23692. [Google Scholar] [CrossRef]
- Kowarik, S.; Hussels, M.-T.; Chruscicki, S.; Münzenberger, S.; Lämmerhirt, A.; Pohl, P.; Schubert, M. Fiber Optic Train Monitoring with Distributed Acoustic Sensing: Conventional and Neural Network Data Analysis. Sensors 2020, 20, 450. [Google Scholar] [CrossRef] [Green Version]
- Hamadi, A.; Montarsolo, E.; Kabalan, A.; Garbini, G.P.; Hammi, T. Machine Learning Based Analysis of Optical Fiber Sensing Intensity Data for Train Tracking Application. In Optical Fiber Sensors Conference 2020 Special Edition; Optica Publishing Group: Washington, DC, USA, 2020. [Google Scholar]
- Hernandez, P.D.; Ramirez, J.A.; Soto, M.A. Deep-Learning-Based Earthquake Detection for Fiber-Optic Distributed Acoustic Sensing. J. Light. Technol. 2022, 40, 2639–2650. [Google Scholar] [CrossRef]
- van den Ende, M.; Lior, I.; Ampuero, J.-P.; Sladen, A.; Ferrari, A.; Richard, C. A Self-Supervised Deep Learning Approach for Blind Denoising and Waveform Coherence Enhancement in Distributed Acoustic Sensing Data. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–14. [Google Scholar] [CrossRef]
- Wang, M.; Deng, L.; Zhong, Y.; Zhang, J.; Peng, F. Rapid Response DAS Denoising Method Based on Deep Learning. J. Light. Technol. 2021, 39, 2583–2593. [Google Scholar] [CrossRef]
- Zhong, T.; Cheng, M.; Lu, S.; Dong, X.; Li, Y. RCEN: A Deep-Learning-Based Background Noise Suppression Method for DAS-VSP Records. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3004905. [Google Scholar] [CrossRef]
- Yang, L.; Fomel, S.; Wang, S.; Chen, X.; Chen, W.; Saad, O.M.; Chen, Y. Denoising of distributed acoustic sensing data using supervised deep learning. Geophysics 2022, 88, WA91–WA104. [Google Scholar] [CrossRef]
- Liehr, S.; Borchardt, C.; Münzenberger, S. Long-distance fiber optic vibration sensing using convolutional neural networks as real-time denoisers. Opt. Express 2020, 28, 39311–39325. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Li, B.; Chen, D.; Li, H.; He, Z. Boosting the data processing speed by artificial neural network in distributed fiber-optic sensor. In Optical Fiber Sensors Conference 2020 Special Edition; Optica Publishing Group: Washington, DC, USA, 2020. [Google Scholar]
- Liehr, S.; Jäger, L.A.; Karapanagiotis, C.; Münzenberger, S.; Kowarik, S. Real-time dynamic strain sensing in optical fibers using artificial neural networks. Opt. Express 2019, 27, 7405–7425. [Google Scholar] [CrossRef] [PubMed]
- Venketeswaran, A.; Lalam, N.; Wuenschell, J.; Ohodnicki, P.R.; Badar, M.; Chen, K.P.; Lu, P.; Duan, Y.; Chorpening, B.; Buric, M. Recent Advances in Machine Learning for Fiber Optic Sensor Applications. Adv. Intell. Syst. 2021, 4, 2100067. [Google Scholar] [CrossRef]
- Krivosheev, A.I.; Barkov, F.L.; Konstantinov, Y.A.; Belokrylov, M.E. State-of-the-Art Methods for Determining the Frequency Shift of Brillouin Scattering in Fiber-Optic Metrology and Sensing (Review). Instrum. Exp. Tech. 2022, 65, 687–710. [Google Scholar] [CrossRef]
- Ge, Z.; Shen, L.; Zhao, C.; Wu, H.; Zhao, Z.; Tang, M. Enabling variable high spatial resolution retrieval from a long pulse BOTDA sensor. IEEE Internet Things J. 2022, 10, 1813–1821. [Google Scholar] [CrossRef]
- Karapanagiotis, C.; Wosniok, A.; Hicke, K.; Krebber, K. Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis. Sensors 2021, 21, 2724. [Google Scholar] [CrossRef]
- Karapanagiotis, C.; Hicke, K.; Krebber, K. Machine learning assisted BOFDA for simultaneous temperature and strain sensing in a standard optical fiber. Opt. Express 2023, 31, 5027–5041. [Google Scholar] [CrossRef]
- Ruiz-Lombera, R.; Fuentes, A.; Rodriguez-Cobo, L.; Lopez-Higuera, J.M.; Mirapeix, J. Simultaneous Temperature and Strain Discrimination in a Conventional BOTDA via Artificial Neural Networks. J. Light. Technol. 2018, 36, 2114–2121. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.W.; Wang, L.; Guo, N.; Zhao, Z.Y.; Yu, C.Y.; Lu, C. Deep neural networks assisted BOTDA for simultaneous temperature and strain measurement with enhanced accuracy. Opt. Express 2019, 27, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zeng, K.; Wang, L.; Tang, M.; Liu, D. Integrated denoising and extraction of both temperature and strain based on a single CNN framework for a BOTDA sensing system. Opt. Express 2022, 30, 34453–34467. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Webb, D.J.; Jackson, D.A. Combined Distributed Temperature and Strain Sensor-Based on Brillouin Loss in an Optical-Fiber. Opt. Lett. 1994, 19, 141–143. [Google Scholar] [CrossRef]
- Alahbabi, M.N.; Cho, Y.T.; Newson, T.P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering. Opt. Lett. 2005, 30, 1276–1278. [Google Scholar] [CrossRef]
- Coscetta, A.; Catalano, E.; Cerri, E.; Cennamo, N.; Zeni, L.; Minardo, A. Hybrid Brillouin/Rayleigh sensor for multiparameter measurements in optical fibers. Opt. Express 2021, 29, 24025–24031. [Google Scholar] [CrossRef]
- Kee, H.H.; Lees, G.P.; Newson, T.P. All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering. Opt. Lett. 2000, 25, 695–697. [Google Scholar] [CrossRef]
- Kishida, K.; Yamauchi, Y.; Guzik, A. Study of Optical Fibers Strain-Temperature Sensitivities Using Hybrid Brillouin-Rayleigh System. Photonic Sens. 2014, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Bao, X. Brillouin Spectrum in LEAF and Simultaneous Temperature and Strain Measurement. J. Light. Technol. 2012, 30, 1053–1059. [Google Scholar] [CrossRef]
- Peng, J.Q.; Lu, Y.G.; Zhang, Z.L.; Wu, Z.N.; Zhang, Y.Y. Distributed Temperature and Strain Measurement Based on Brillouin Gain Spectrum and Brillouin Beat Spectrum. IEEE Photonic Technol. Lett. 2021, 33, 1217–1220. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Zhang, J.; Qiao, L.; Wang, T.; Gao, S.; Zhang, M. Simultaneous Strain and Temperature Measurement Based on Chaotic Brillouin Optical Correlation-Domain Analysis in Large-Effective-Area Fibers. Photonic Sens. 2021, 11, 377–386. [Google Scholar] [CrossRef]
- Zou, L.F.; Bao, X.Y.; Afshar, V.S.; Chen, L. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber. Opt. Lett. 2004, 29, 1485–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.L.; Yan, L.S.; Zhang, X.P.; Pan, W. Temperature and Strain Discrimination in BOTDA Fiber Sensor by Utilizing Dispersion Compensating Fiber. IEEE Sens. J. 2018, 18, 7100–7105. [Google Scholar] [CrossRef]
- Ekechukwu, G.K.; Sharma, J. Well-scale demonstration of distributed pressure sensing using fiber-optic DAS and DTS. Sci. Rep. 2021, 11, 12505. [Google Scholar] [CrossRef] [PubMed]
- Hotate, K.; Hasegawa, T. Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber Using a Correlation-Based Technique: Proposal, Experiment and Simulation (Special Issue on Optical Fiber Sensors). IEICE Trans. Electron. 2000, 83, 405–412. [Google Scholar]
- Hotate, K. Recent achievements in BOCDA/BOCDR. In Proceedings of the IEEE SENSORS 2014 Proceedings, Valencia, Spain, 2–5 November 2014; pp. 142–145. [Google Scholar]
- Mizuno, Y.; Zou, W.; He, Z.; Hotate, K. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR). Opt. Express 2008, 16, 12148–12153. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; Brown, A.; DeMerchant, M.; Smith, J. Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses. Opt. Lett. 1999, 24, 510–512. [Google Scholar]
- Liu, Z.; Ferrier, G.; Bao, X.; Zeng, X.; Yu, Q.; Kim, A. Brillouin Scattering Based Distributed Fiber Optic Temperature Sensing for Fire Detection. Fire Saf. Sci. 2003, 7, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Farahani, M.A.; Castillo-Guerra, E.; Colpitts, B.G. Accurate estimation of Brillouin frequency shift in Brillouin optical time domain analysis sensors using cross correlation. Opt. Lett. 2011, 36, 4275–4277. [Google Scholar] [CrossRef]
- Farahani, M.A.; Castillo-Guerra, E.; Colpitts, B.G. A Detailed Evaluation of the Correlation-Based Method Used for Estimation of the Brillouin Frequency Shift in BOTDA Sensors. IEEE Sens. J. 2013, 13, 4589–4598. [Google Scholar] [CrossRef]
- Liang, Y.; Jiang, J.; Chen, Y.; Zhu, R.; Lu, C.; Wang, Z. Optimized Feedforward Neural Network Training for Efficient Brillouin Frequency Shift Retrieval in Fiber. IEEE Access 2019, 7, 68034–68042. [Google Scholar] [CrossRef]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Ying, X. An Overview of Overfitting and its Solutions. J. Phys. Conf. Ser. 2019, 1168, 22022. [Google Scholar] [CrossRef]
- Prechelt, L. Early Stopping—But when? In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 1998; pp. 55–69. [Google Scholar]
- Zhang, Y.; Yang, Y. Cross-validation for selecting a model selection procedure. J. Econom. 2015, 187, 95–112. [Google Scholar] [CrossRef]
- Lu, C.; Liang, Y.; Jia, X.; Fu, Y.; Liang, J.; Wang, Z. Artificial Neural Network for Accurate Retrieval of Fiber Brillouin Frequency Shift with Non-Local Effects. IEEE Sens. J. 2020, 20, 8559–8569. [Google Scholar] [CrossRef]
- Chen, B.; Su, L.; Zhang, Z.; Liu, X.; Dai, T.; Song, M.; Yu, H.; Wang, Y.; Yang, J. Wavelet convolutional neural network for robust and fast temperature measurements in Brillouin optical time domain reflectometry. Opt. Express 2022, 30, 13942–13958. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Wu, H.; Zhao, C.; Shen, L.; Fu, S.; Tang, M. Distributed Brillouin frequency shift extraction via a convolutional neural network. Photonics Res. 2020, 8, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Buber, E.; Diri, B. Performance Analysis and CPU vs GPU Comparison for Deep Learning. In Proceedings of the 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25–27 October 2018; pp. 1–6. [Google Scholar]
- Qi, D.; Li, J.; Guan, X.; Chan, C.-K. Dynamic polarization-insensitive BOTDA in direct-detection OFDM with CNN-based BFS extraction. Opt. Express 2022, 30, 7725–7736. [Google Scholar] [CrossRef]
- Caceres, J.N.; Noda, K.; Zhu, G.; Lee, H.; Nakamura, K.; Mizuno, Y. Spatial Resolution Enhancement of Brillouin Optical Correlation-Domain Reflectometry Using Convolutional Neural Network: Proof of Concept. IEEE Access 2021, 9, 124701–124710. [Google Scholar] [CrossRef]
- Lalam, N.; Venketeswaran, A.; Lu, P.; Buric, M.P.; Schröder, H.; Chen, R.T. Probabilistic deep neural network based signal processing for Brillouin gain and phase spectrums of vector BOTDA system. In Proceedings of the Optical Interconnects XXI, Online, 6–11 March 2021. [Google Scholar]
- Soto, M.A.; Thévenaz, L. Modeling and evaluating the performance of Brillouin distributed optical fiber sensors. Opt. Express 2013, 21, 31347–31366. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Zhang, D.; Li, H.; Huang, Y. Efficient two-stage strain/temperature measurement method for BOTDA system based on Bayesian uncertainty quantification. Measurement 2022, 203, 111966. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Yao, Y.; Mizuno, Y. Dynamic strain measurement in Brillouin optical correlation-domain sensing facilitated by dimensionality reduction and support vector machine. Opt. Express 2022, 30, 15616–15633. [Google Scholar] [CrossRef]
- Zheng, H.; Xiao, F.; Sun, S.; Qin, Y. Brillouin Frequency Shift Extraction Based on AdaBoost Algorithm. Sensors 2022, 22, 3354. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Rosset, S.; Zhu, J.; Zou, H. Multi-class AdaBoost. Stat. Interface 2009, 2, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, J.R. Learning with Continuous Classes. In Proceedings of the Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 16–18 November 1992; pp. 343–348. [Google Scholar]
- Dobra, A.; Gehrke, J. SECRET: A scalable linear regression tree algorithm. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002. [Google Scholar]
- Fix, E.; Hodges, J.L. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. Int. Stat. Rev. Rev. Int. Stat. 1989, 57, 238–247. [Google Scholar] [CrossRef]
- Zheng, H.; Peng, G.-D.; He, Z. Extraction of Brillouin frequency shift in Brillouin distributed fiber sensors by neighbors-based machine learning. In Proceedings of the Advanced Sensor Systems and Applications X, Online, 11–16 October 2020. [Google Scholar]
- Zheng, H.; Sun, S.; Qin, Y.; Xiao, F.; Dai, C. Extraction of Brillouin frequency shift from Brillouin gain spectrum in Brillouin distributed fiber sensors using K nearest neighbor algorithm. Opt. Fiber Technol. 2022, 71, 102903. [Google Scholar] [CrossRef]
- Xiao, F.; Lv, M.; Li, X. Fast Measurement of Brillouin Frequency Shift in Optical Fiber Based on a Novel Feedforward Neural Network. Photonics 2021, 8, 474. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [Green Version]
- Abdolrasol, M.G.M.; Hussain, S.M.S.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial Neural Networks Based Optimization Techniques: A Review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Aszemi, N.M.; Dominic, P. Hyperparameter optimization in convolutional neural network using genetic algorithms. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Zhu, H. Hyper-parameter optimization: A review of algorithms and applications. arXiv 2020, arXiv:2003.05689. [Google Scholar]
- Montavon, G.; Samek, W.; Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 2018, 73, 1–15. [Google Scholar] [CrossRef]
- Bansal, M.; Goyal, A.; Choudhary, A. A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning. Decis. Anal. J. 2022, 3, 100071. [Google Scholar] [CrossRef]
- Wang, B.; Guo, N.; Wang, L.; Yu, C.; Lu, C. Denoising and Robust Temperature Extraction for BOTDA Systems based on Denoising Autoencoder and DNN. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar]
- Wang, B.; Guo, N.; Wang, L.; Yu, C.; Lu, C. Robust and Fast Temperature Extraction for Brillouin Optical Time-Domain Analyzer by Using Denoising Autoencoder-Based Deep Neural Networks. IEEE Sens. J. 2020, 20, 3614–3620. [Google Scholar] [CrossRef]
- Yang, Y.-n.; Dong, Y.; Yu, K. SNR Improvement based on Attention-DNet for Brillouin Distributed Optical Fiber Sensors. In Proceedings of the 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), Toyama, Japan, 3–6 July 2022; pp. 1–3. [Google Scholar]
- Wu, H.; Wan, Y.; Tang, M.; Chen, Y.; Zhao, C.; Liao, R.; Chang, Y.; Fu, S.; Shum, P.P.; Liu, D. Real-Time Denoising of Brillouin Optical Time Domain Analyzer with High Data Fidelity Using Convolutional Neural Networks. J. Light. Technol. 2019, 37, 2648–2653. [Google Scholar] [CrossRef]
- Zheng, H.; Yan, Y.; Wang, Y.; Shen, X.; Lu, C. Deep Learning Enhanced Long-Range Fast BOTDA for Vibration Measurement. J. Light. Technol. 2022, 40, 262–268. [Google Scholar] [CrossRef]
- Tian, C.; Xu, Y.; Li, Z.; Zuo, W.; Fei, L.; Liu, H. Attention-guided CNN for image denoising. Neural Netw. 2020, 124, 117–129. [Google Scholar] [CrossRef]
- Zheng, M.; Xu, J.; Shen, Y.; Tian, C.; Li, J.; Fei, L.; Zong, M.; Liu, X. Attention-based CNNs for Image Classification: A Survey. J. Phys. Conf. Ser. 2022, 2171, 12068. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Zhao, Z.; Guo, N.; Shu, C.; Lu, C. Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques. Opt. Express 2018, 26, 5126–5139. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M. Enlarging smaller images before inputting into convolutional neural network: Zero-padding vs. interpolation. J. Big Data 2019, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.K.; Wang, L.; Guo, N.; Lu, C.; Tam, H.Y. Temperature sensing in BOTDA system by using artificial neural network. Electron. Lett. 2015, 51, 1578–1580. [Google Scholar] [CrossRef]
- Azad, A.K.; Wang, L.; Guo, N.; Tam, H.Y.; Lu, C. Signal processing using artificial neural network for BOTDA sensor system. Opt. Express 2016, 24, 6769–6782. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, B.; Jin, C.; Guo, N.; Yu, C.; Lu, C. Brillouin optical time domain analyzer enhanced by artificial/deep neural networks. In Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017; pp. 1–3. [Google Scholar]
- Wang, J.; Li, Y.; Liao, J. Temperature extraction for Brillouin optical fiber sensing system based on extreme learning machine. Opt. Commun. 2019, 453, 124418. [Google Scholar] [CrossRef]
- Cao, Z.Y.; Guo, N.; Li, M.H.; Yu, K.L.; Gao, K.Q. Back propagation neutral network based signal acquisition for Brillouin distributed optical fiber sensors. Opt. Express 2019, 27, 4549–4561. [Google Scholar] [CrossRef]
- Madaschi, A.; Morosi, J.; Brunero, M.; Boffi, P. Enhanced Neural Network Implementation for Temperature Profile Extraction in Distributed Brillouin Scattering-Based Sensors. IEEE Sens. J. 2022, 22, 6871–6878. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J. Optimized neural network for temperature extraction from Brillouin scattering spectra. Opt. Fiber Technol. 2020, 58, 102314. [Google Scholar] [CrossRef]
- Motil, A.; Hadar, R.; Sovran, I.; Tur, M. Gain dependence of the linewidth of Brillouin amplification in optical fibers. Opt. Express 2014, 22, 27535–27541. [Google Scholar] [CrossRef]
- Wang, B.; Guo, N.; Khan, F.N.; Azad, A.K.; Wang, L.; Yu, C.; Lu, C. Extraction of temperature distribution using deep neural networks for BOTDA sensing system. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, 31 July–4 August 2017; pp. 1–4. [Google Scholar]
- Wang, M.H.; Sui, Y.; Zhou, W.N.; An, X.; Dong, W. AIoT enabled resampling filter for temperature extraction of the Brillouin gain spectrum. Opt. Express 2022, 30, 36110–36121. [Google Scholar] [CrossRef]
- Wang, M.H.; Sui, Y.; Zhou, W.N.; Dong, W.; Zhang, X.D. Sweep frequency method with variance weight probability for temperature extraction of the Brillouin gain spectrum based on an artificial neural network. Opt. Express 2021, 29, 28994–29006. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Cheng, L.; Yu, L.; Zhu, H.; Luo, B.; Zou, X. Fast temperature extraction via Echo State Network for BOTDA sensors. In Proceedings of the Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications 2020 (ACP/IPOC), Beijing, China, 24–27 October 2020. [Google Scholar]
- Zhou, H.; Zhu, H.; Zhang, Y.; Huang, M.; Li, G.; Yang, Y. Fast and accurate temperature extraction via general regression neural network for BOTDA sensors. In Proceedings of the 12th International Conference on Information Optics and Photonics, Xi’an, China, 23–26 July 2021. [Google Scholar]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, L.; Hu, Z.; Cheng, L.; Sui, H.; Zhu, H.; Li, G.; Luo, B.; Zou, X.; Yan, L. Ultrafast and Accurate Temperature Extraction via Kernel Extreme Learning Machine for BOTDA Sensors. J. Light. Technol. 2021, 39, 1537–1543. [Google Scholar] [CrossRef]
- Huang, G.; Huang, G.-B.; Song, S.; You, K. Trends in extreme learning machines: A review. Neural Netw. 2015, 61, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Guang-Bin, H.; Hongming, Z.; Xiaojian, D.; Rui, Z. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 513–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Wang, L.; Guo, N.; Shu, C.; Lu, C. Brillouin Optical Time-Domain Analyzer Assisted by Support Vector Machine for Ultrafast Temperature Extraction. J. Light. Technol. 2017, 35, 4159–4167. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Zhao, Z.; Shu, C.; Lu, C. Support Vector Machine based Differential Pulse-width Pair Brillouin Optical Time Domain Analyzer. IEEE Photonics J. 2018, 10, 6802911. [Google Scholar] [CrossRef]
- Nordin, N.D.; Abdullah, F.; Zan, M.S.D.; A Bakar, A.A.; Krivosheev, A.I.; Barkov, F.L.; Konstantinov, Y.A. Improving Prediction Accuracy and Extraction Precision of Frequency Shift from Low-SNR Brillouin Gain Spectra in Distributed Structural Health Monitoring. Sensors 2022, 22, 2677. [Google Scholar] [CrossRef]
- Nordin, N.D.; Abdullah, F.; Zan, M.S.D.; Ismail, A.; Jamaludin, M.Z.; Bakar, A.A.A. Fast temperature extraction approach for BOTDA using Generalized Linear Model. In Proceedings of the 2020 IEEE 8th International Conference on Photonics (ICP), Kota Bharu, Malaysia, 12 May–30 June 2020; pp. 13–14. [Google Scholar]
- Nordin, N.D.; Zan, M.S.D.; Abdullah, F. Generalized linear model for enhancing the temperature measurement performance in Brillouin optical time domain analysis fiber sensor. Opt. Fiber Technol. 2020, 58, 102298. [Google Scholar] [CrossRef]
- Nordin, N.D.; Zan, M.S.D.; Abdullah, F. Comparative Analysis on the Deployment of Machine Learning Algorithms in the Distributed Brillouin Optical Time Domain Analysis (BOTDA) Fiber Sensor. Photonics 2020, 7, 79. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Song, Q.; Zhang, C.; Tang, G.; Ansari, F. Deep learning method for detection of structural microcracks by brillouin scattering based distributed optical fiber sensors. Smart Mater. Struct. 2020, 29, 75008. [Google Scholar] [CrossRef]
- Wei, C.; Deng, Q.; Yin, Y.; Yan, M.; Lu, M.; Deng, K. A Machine Learning Study on Internal Force Characteristics of the Anti-Slide Pile Based on the DOFS-BOTDA Monitoring Technology. Sensors 2022, 22, 2085. [Google Scholar] [CrossRef]
- Song, Q.; Yan, G.; Tang, G.; Ansari, F. Robust principal component analysis and support vector machine for detection of microcracks with distributed optical fiber sensors. Mech. Syst. Signal Process. 2021, 146, 107019. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, B.; Zhu, H.; Yu, X.; Wei, G. A machine learning method for inclinometer lateral deflection calculation based on distributed strain sensing technology. Bull. Eng. Geol. Environ. 2020, 79, 3383–3401. [Google Scholar] [CrossRef]
- Ruiz-Lombera, R.; Serrano, J.M.; Lopez-Higuera, J.M. Automatic strain detection in a Brillouin Optical Time Domain sensor using Principal Component Analysis and Artificial Neural Networks. In Proceedings of the IEEE SENSORS 2014 Proceedings, Valencia, Spain, 2–5 November 2014; pp. 1539–1542. [Google Scholar]
- Lv, T.; Ye, X.; Zheng, Y.; Ge, Z.; Xu, Z.; Sun, X. Error Estimation of BFS Extraction with Optimized Neural Network & Frequency Scanning Range. J. Light. Technol. 2021, 39, 5149–5155. [Google Scholar]
- Elshawi, R.; Wahab, A.; Barnawi, A.; Sakr, S. DLBench: A comprehensive experimental evaluation of deep learning frameworks. Clust. Comput. 2021, 24, 2017–2038. [Google Scholar] [CrossRef]
- Yao, Y.; Set, S.Y.; Yamashita, S. Proposal of signal processing based on machine learning in Brillouin optical correlation domain analysis/ reflectometry. In Proceedings of the 2017 22nd Microoptics Conference (MOC), Tokyo, Japan, 19–22 November 2017; pp. 228–229. [Google Scholar]
- Yao, Y.; Mizuno, Y. Neural network-assisted signal processing in Brillouin optical correlation-domain sensing for potential high-speed implementation. Opt. Express 2021, 29, 35474–35489. [Google Scholar] [CrossRef]
- Chen, X.; Yu, H.; Huang, W. A high accurate fitting algorithm for Brillouin scattering spectrum of distributed sensing systems based on LSSVM networks. In Proceedings of the 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 23–26 September 2021; pp. 107–110. [Google Scholar]
- Wan, D.; Shan, L.; Xi, L.; Xiao, Z.; Zhang, Y.a.; Yuan, X.; Zhang, X.; Zhang, H. An improved lorentz fitting algorithm for BOTDR using SVM model to capture the main peak of power cumulative average data. Opt. Fiber Technol. 2022, 74, 103082. [Google Scholar] [CrossRef]
- Karapanagiotis, C. Evaluation of the generalization performance of a CNN-assisted BOFDA system. In Proceedings of the Sensors and Measuring Systems; 21st ITG/GMA-Symposium, Nuremberg, Germany, 10–11 May 2022; pp. 1–4. [Google Scholar]
- Gyger, F.; Yang, Z.; Soto, M.A.; Yang, F.; Tow, K.H.; Thévenaz, L. High Signal-to-Noise Ratio Stimulated Brillouin Scattering Gain Spectrum Measurement. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Karapanagiotis, C.; Hicke, K.; Krebber, K. Temperature and humidity discrimination in Brillouin distributed fiber optic sensing using machine learning algorithms. In Proceedings of the Optical Sensing and Detection VII, Strasbourg, France, 3–7 April 2022. Online, 9–15 May 2022. [Google Scholar]
- Karapanagiotis, C.; Hicke, K.; Wosniok, A.; Krebber, K. Distributed humidity fiber-optic sensor based on BOFDA using a simple machine learning approach. Opt. Express 2022, 30, 12484–12494. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Zhou, D.-P.; Peng, W.; Chen, L.; Bao, X. Brillouin optical time-domain analysis via compressed sensing. Opt. Lett. 2018, 43, 5496–5499. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yang, Y.-N.; Azad, A.K.; Yang, Z.; Yu, K.; Zhao, S. Compressed Sensing Based on K-SVD for Brillouin Optical Fiber Distributed Sensors. IEEE Sens. J. 2022, 22, 16414–16421. [Google Scholar] [CrossRef]
- Zheng, H.; Yan, Y.; Zhao, Z.; Zhu, T.; Zhang, J.; Guo, N.; Lu, C. Accelerated Fast BOTDA Assisted by Compressed Sensing and Image Denoising. IEEE Sens. J. 2021, 21, 25723–25729. [Google Scholar] [CrossRef]
- Calderbank, R. Compressed Learning: Universal Sparse Dimensionality Reduction and Learning in the Measurement Domain, Preprint 2009. Available online: https://www.semanticscholar.org/paper/Compressed-Learning-%3A-Universal-Sparse-Reduction-in-Calderbank/627c14fe9097d459b8fd47e8a901694198be9d5d#citing-papers (accessed on 31 May 2023).
Algorithm | Strengths | Weaknesses | References |
---|---|---|---|
AΝΝ/CNN | Handle complex patterns and relationships in large data | Time-consuming training, requires a large amount of data | [68,92,97,98,99,101,102,103,116,123,124,125,126,127,132,133,134,135,136,137,138,141,146,156,160,161,163,164] |
KNN | No training is required, simple and intuitive | Relatively slow predictions | [114,115] |
SVM | Fast training and predictions, works well with small datasets | Not suitable for large datasets | [107,149,150,158,165,166] |
GLM | Easy to interpret | Difficult to handle non-linear and complex data | [144,151,153,154] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapanagiotis, C.; Krebber, K. Machine Learning Approaches in Brillouin Distributed Fiber Optic Sensors. Sensors 2023, 23, 6187. https://doi.org/10.3390/s23136187
Karapanagiotis C, Krebber K. Machine Learning Approaches in Brillouin Distributed Fiber Optic Sensors. Sensors. 2023; 23(13):6187. https://doi.org/10.3390/s23136187
Chicago/Turabian StyleKarapanagiotis, Christos, and Katerina Krebber. 2023. "Machine Learning Approaches in Brillouin Distributed Fiber Optic Sensors" Sensors 23, no. 13: 6187. https://doi.org/10.3390/s23136187
APA StyleKarapanagiotis, C., & Krebber, K. (2023). Machine Learning Approaches in Brillouin Distributed Fiber Optic Sensors. Sensors, 23(13), 6187. https://doi.org/10.3390/s23136187