Heartbeat Detection in Gyrocardiography Signals without Concurrent ECG Tracings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Signals Pre-Processing
2.3. Template Matching
2.3.1. Template Selection
2.3.2. Heartbeats Localization on Normalized Cross-Correlation Function
2.3.3. Inter-Beat Intervals Estimation
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Patient ID # | ECG Heartbeats (R-Peaks) | GCG Heartbeats (NCC-Peaks) | FP | FN | DE | Compared Inter-Beat Intervals |
---|---|---|---|---|---|---|
CP-01 | 448 | 448 | 0 | 0 | 2 | 443 |
CP-02 | 651 | 633 | 3 | 21 | 3 | 609 |
CP-03 | 481 | 474 | 2 | 9 | 9 | 451 |
CP-04 | 661 | 629 | 2 | 34 | 16 | 562 |
CP-05 | 509 | 502 | 2 | 9 | 6 | 484 |
CP-06 | 294 | 286 | 2 | 10 | 7 | 264 |
CP-07 | 451 | 450 | 3 | 4 | 5 | 435 |
CP-08 | 544 | 544 | 0 | 0 | 4 | 536 |
CP-09 | 364 | 320 | 2 | 46 | 57 | 190 |
CP-10 | 506 | 485 | 19 | 40 | 41 | 347 |
CP-11 | 656 | 627 | 3 | 32 | 57 | 500 |
CP-12 | 423 | 425 | 9 | 7 | 3 | 404 |
CP-13 | 837 | 829 | 0 | 8 | 1 | 819 |
CP-14 | 472 | 429 | 6 | 48 | 27 | 319 |
CP-15 | 630 | 618 | 0 | 12 | 16 | 590 |
CP-16 | 355 | 354 | 1 | 2 | 4 | 342 |
CP-17 | 362 | 366 | 13 | 9 | 42 | 272 |
CP-18 | 601 | 599 | 1 | 3 | 1 | 593 |
CP-19 | 484 | 473 | 8 | 19 | 32 | 404 |
CP-20 | 391 | 393 | 3 | 1 | 0 | 388 |
CP-21 | 247 | 247 | 0 | 0 | 2 | 242 |
CP-22 | 610 | 534 | 5 | 81 | 71 | 368 |
CP-23 | 235 | 235 | 0 | 0 | 0 | 234 |
CP-25 | 602 | 494 | 10 | 118 | 147 | 166 |
CP-26 | 389 | 379 | 2 | 12 | 6 | 352 |
CP-27 | 130 | 130 | 1 | 1 | 0 | 127 |
CP-28 | 238 | 239 | 1 | 0 | 2 | 233 |
CP-29 | 290 | 192 | 0 | 98 | 20 | 91 |
CP-30 | 523 | 512 | 0 | 11 | 3 | 500 |
CP-32 | 527 | 493 | 15 | 49 | 91 | 298 |
CP-33 | 449 | 487 | 40 | 2 | 10 | 424 |
CP-34 | 462 | 455 | 2 | 9 | 5 | 436 |
CP-35 | 484 | 483 | 13 | 14 | 125 | 269 |
CP-36 | 386 | 409 | 26 | 3 | 197 | 73 |
CP-37 | 342 | 343 | 3 | 2 | 3 | 331 |
CP-38 | 406 | 339 | 23 | 90 | 53 | 161 |
CP-39 | 518 | 515 | 0 | 3 | 39 | 448 |
CP-40 | 509 | 413 | 0 | 96 | 19 | 328 |
CP-41 | 349 | 349 | 0 | 0 | 1 | 346 |
CP-42 | 346 | 343 | 6 | 9 | 18 | 296 |
CP-43 | 460 | 408 | 15 | 67 | 138 | 159 |
CP-44 | 321 | 321 | 0 | 0 | 4 | 312 |
CP-45 | 357 | 359 | 18 | 16 | 58 | 232 |
CP-46 | 499 | 489 | 3 | 13 | 21 | 441 |
CP-47 | 537 | 457 | 11 | 91 | 38 | 319 |
CP-48 | 637 | 588 | 33 | 82 | 121 | 313 |
CP-49 | 451 | 425 | 13 | 39 | 27 | 325 |
CP-50 | 781 | 679 | 0 | 102 | 30 | 547 |
CP-51 | 621 | 621 | 0 | 0 | 52 | 543 |
CP-52 | 728 | 494 | 0 | 234 | 54 | 212 |
CP-53 | 562 | 497 | 0 | 65 | 49 | 377 |
CP-54 | 397 | 366 | 1 | 32 | 36 | 275 |
CP-56 | 742 | 629 | 0 | 113 | 6 | 511 |
CP-57 | 507 | 507 | 1 | 1 | 3 | 499 |
CP-58 | 525 | 525 | 1 | 1 | 1 | 521 |
CP-59 | 405 | 405 | 1 | 1 | 1 | 400 |
CP-60 | 512 | 503 | 0 | 9 | 10 | 484 |
CP-61 | 397 | 397 | 0 | 0 | 2 | 393 |
CP-62 | 572 | 500 | 1 | 73 | 5 | 424 |
CP-63 | 610 | 609 | 0 | 1 | 0 | 607 |
CP-64 | 382 | 396 | 14 | 0 | 4 | 373 |
CP-65 | 369 | 369 | 0 | 0 | 5 | 361 |
CP-66 | 468 | 468 | 1 | 1 | 0 | 465 |
CP-67 | 539 | 514 | 10 | 35 | 25 | 429 |
CP-68 | 327 | 348 | 23 | 2 | 1 | 320 |
CP-69 | 587 | 585 | 0 | 2 | 2 | 578 |
CP-70 | 422 | 429 | 19 | 12 | 44 | 324 |
UP-01 | 239 | 232 | 22 | 29 | 58 | 111 |
UP-02 | 286 | 268 | 5 | 23 | 66 | 134 |
UP-03 | 264 | 218 | 1 | 47 | 34 | 135 |
UP-04 | 258 | 247 | 7 | 18 | 23 | 183 |
UP-05 | 462 | 412 | 2 | 52 | 122 | 178 |
UP-06 | 458 | 398 | 0 | 60 | 16 | 325 |
UP-07 | 376 | 372 | 1 | 5 | 3 | 359 |
UP-08 | 257 | 257 | 0 | 0 | 2 | 252 |
UP-09 | 286 | 285 | 2 | 3 | 7 | 267 |
UP-10 | 165 | 161 | 1 | 5 | 12 | 131 |
UP-11 | 417 | 386 | 25 | 56 | 10 | 297 |
UP-12 | 339 | 336 | 2 | 5 | 25 | 283 |
UP-13 | 106 | 104 | 0 | 2 | 7 | 89 |
UP-14 | 340 | 341 | 1 | 0 | 9 | 321 |
UP-15 | 214 | 215 | 1 | 0 | 0 | 213 |
UP-16 | 221 | 220 | 4 | 4 | 36 | 150 |
UP-17 | 613 | 544 | 1 | 70 | 62 | 421 |
UP-18 | 350 | 351 | 1 | 0 | 3 | 343 |
UP-19 | 116 | 116 | 11 | 11 | 45 | 26 |
UP-20 | 617 | 494 | 3 | 126 | 55 | 329 |
UP-21 | 305 | 308 | 3 | 0 | 2 | 300 |
UP-23 | 565 | 570 | 5 | 0 | 3 | 558 |
UP-24 | 349 | 335 | 0 | 14 | 11 | 308 |
UP-25 | 244 | 222 | 12 | 34 | 44 | 131 |
UP-26 | 160 | 158 | 0 | 2 | 1 | 154 |
UP-27 | 269 | 276 | 22 | 15 | 74 | 131 |
UP-29 | 146 | 146 | 1 | 1 | 5 | 133 |
UP-30 | 228 | 230 | 2 | 0 | 39 | 150 |
Total | 40,527 | 38,565 | 526 | 2486 | 2656 | 31,831 |
Patient ID # | ECG Heartbeats (R-Peaks) | SCG | GCG | ||||
---|---|---|---|---|---|---|---|
TP | FP | FN | TP | FP | FN | ||
CP-01 | 448 | 448 | 0 | 0 | 446 | 2 | 2 |
CP-02 | 651 | 606 | 37 | 45 | 627 | 6 | 24 |
CP-03 | 481 | ― | ― | ― | 463 | 11 | 18 |
CP-04 | 661 | 607 | 47 | 54 | 611 | 18 | 50 |
CP-05 | 509 | 496 | 11 | 13 | 494 | 8 | 15 |
CP-06 | 294 | ― | ― | ― | 277 | 9 | 17 |
CP-07 | 451 | 445 | 8 | 6 | 442 | 8 | 9 |
CP-08 | 544 | 520 | 18 | 24 | 540 | 4 | 4 |
CP-09 | 364 | 222 | 120 | 142 | 261 | 59 | 103 |
CP-10 | 506 | 329 | 176 | 177 | 425 | 60 | 81 |
CP-11 | 656 | 580 | 82 | 76 | 567 | 60 | 89 |
CP-12 | 423 | 406 | 27 | 17 | 413 | 12 | 10 |
CP-13 | 837 | 824 | 5 | 12 | 828 | 1 | 9 |
CP-14 | 472 | 278 | 199 | 194 | 396 | 33 | 75 |
CP-15 | 630 | 620 | 3 | 10 | 602 | 16 | 28 |
CP-16 | 355 | 332 | 28 | 23 | 349 | 5 | 6 |
CP-17 | 362 | ― | ― | ― | 311 | 55 | 51 |
CP-18 | 601 | ― | ― | ― | 597 | 2 | 4 |
CP-19 | 484 | 445 | 48 | 39 | 433 | 40 | 51 |
CP-20 | 391 | 390 | 1 | 1 | 390 | 3 | 1 |
CP-21 | 247 | 244 | 3 | 3 | 245 | 2 | 2 |
CP-22 | 610 | 528 | 67 | 82 | 458 | 76 | 152 |
CP-23 | 235 | 197 | 28 | 38 | 235 | 0 | 0 |
CP-24 | (1036) | ― | ― | ― | ― | ― | ― |
CP-25 | 602 | ― | ― | ― | 337 | 157 | 265 |
CP-26 | 389 | 371 | 10 | 18 | 371 | 8 | 18 |
CP-27 | 130 | 130 | 0 | 0 | 129 | 1 | 1 |
CP-28 | 238 | 232 | 5 | 6 | 236 | 3 | 2 |
CP-29 | 290 | ― | ― | ― | 172 | 20 | 118 |
CP-30 | 523 | 508 | 2 | 15 | 509 | 3 | 14 |
CP-31 | (948) | ― | ― | ― | ― | ― | ― |
CP-32 | 527 | 353 | 133 | 174 | 387 | 106 | 140 |
CP-33 | 449 | 432 | 24 | 17 | 437 | 50 | 12 |
CP-34 | 462 | 452 | 8 | 10 | 448 | 7 | 14 |
CP-35 | 484 | ― | ― | ― | 345 | 138 | 139 |
CP-36 | 386 | 268 | 109 | 118 | 186 | 223 | 200 |
CP-37 | 342 | 190 | 145 | 152 | 337 | 6 | 5 |
CP-38 | 406 | 356 | 64 | 50 | 263 | 76 | 143 |
CP-39 | 518 | 510 | 8 | 8 | 476 | 39 | 42 |
CP-40 | 509 | 246 | 259 | 263 | 394 | 19 | 115 |
CP-41 | 349 | 341 | 3 | 8 | 348 | 1 | 1 |
CP-42 | 346 | 272 | 68 | 74 | 319 | 24 | 27 |
CP-43 | 460 | 346 | 132 | 114 | 255 | 153 | 205 |
CP-44 | 321 | 318 | 2 | 3 | 317 | 4 | 4 |
CP-45 | 357 | 326 | 17 | 31 | 283 | 76 | 74 |
CP-46 | 499 | ― | ― | ― | 465 | 24 | 34 |
CP-47 | 537 | 505 | 17 | 32 | 408 | 49 | 129 |
CP-48 | 637 | 560 | 66 | 77 | 434 | 154 | 203 |
CP-49 | 451 | 399 | 58 | 52 | 385 | 40 | 66 |
CP-50 | 781 | ― | ― | ― | 649 | 30 | 132 |
CP-51 | 621 | ― | ― | ― | 569 | 52 | 52 |
CP-52 | 728 | 494 | 38 | 234 | 440 | 54 | 288 |
CP-53 | 562 | 561 | 0 | 1 | 448 | 49 | 114 |
CP-54 | 397 | ― | ― | ― | 329 | 37 | 68 |
CP-55 | 793 | 339 | 263 | 454 | ― | ― | ― |
CP-56 | 742 | 533 | 160 | 206 | 623 | 6 | 119 |
CP-57 | 507 | 501 | 5 | 6 | 503 | 4 | 4 |
CP-58 | 525 | 523 | 1 | 2 | 523 | 2 | 2 |
CP-59 | 405 | 405 | 1 | 0 | 403 | 2 | 2 |
CP-60 | 512 | 502 | 1 | 10 | 493 | 10 | 19 |
CP-61 | 397 | 396 | 7 | 1 | 395 | 2 | 2 |
CP-62 | 572 | ― | ― | ― | 494 | 6 | 78 |
CP-63 | 610 | 608 | 0 | 2 | 609 | 0 | 1 |
CP-64 | 382 | 381 | 10 | 1 | 378 | 18 | 4 |
CP-65 | 369 | 365 | 1 | 4 | 364 | 5 | 5 |
CP-66 | 468 | 467 | 1 | 1 | 467 | 1 | 1 |
CP-67 | 539 | ― | ― | ― | 479 | 35 | 60 |
CP-68 | 327 | 275 | 55 | 52 | 324 | 24 | 3 |
CP-69 | 587 | 585 | 0 | 2 | 583 | 2 | 4 |
CP-70 | 422 | 376 | 36 | 46 | 366 | 63 | 56 |
UP-01 | 239 | 190 | 51 | 49 | 152 | 80 | 87 |
UP-02 | 286 | ― | ― | ― | 197 | 71 | 89 |
UP-03 | 264 | ― | ― | ― | 183 | 35 | 81 |
UP-04 | 258 | 244 | 7 | 14 | 217 | 30 | 41 |
UP-05 | 462 | ― | ― | ― | 288 | 124 | 174 |
UP-06 | 458 | 371 | 29 | 87 | 382 | 16 | 76 |
UP-07 | 376 | 370 | 3 | 6 | 368 | 4 | 8 |
UP-08 | 257 | 255 | 1 | 2 | 255 | 2 | 2 |
UP-09 | 286 | 278 | 0 | 8 | 276 | 9 | 10 |
UP-10 | 165 | 151 | 6 | 14 | 148 | 13 | 17 |
UP-11 | 417 | 343 | 71 | 74 | 351 | 35 | 66 |
UP-12 | 339 | 260 | 87 | 79 | 309 | 27 | 30 |
UP-13 | 106 | 92 | 1 | 14 | 97 | 7 | 9 |
UP-14 | 340 | 333 | 5 | 7 | 331 | 10 | 9 |
UP-15 | 214 | 189 | 0 | 25 | 214 | 1 | 0 |
UP-16 | 221 | 195 | 19 | 26 | 180 | 40 | 40 |
UP-17 | 613 | 596 | 7 | 17 | 481 | 63 | 132 |
UP-18 | 350 | 348 | 1 | 2 | 347 | 4 | 3 |
UP-19 | 116 | ― | ― | ― | 60 | 56 | 56 |
UP-20 | 617 | 613 | 2 | 4 | 436 | 58 | 181 |
UP-21 | 305 | 303 | 2 | 2 | 303 | 5 | 2 |
UP-22 | (700) | ― | ― | ― | ― | ― | ― |
UP-23 | 565 | 565 | 2 | 0 | 562 | 8 | 3 |
UP-24 | 349 | 329 | 11 | 20 | 324 | 11 | 25 |
UP-25 | 244 | ― | ― | ― | 166 | 56 | 78 |
UP-26 | 160 | ― | ― | ― | 157 | 1 | 3 |
UP-27 | 269 | 246 | 37 | 23 | 180 | 96 | 89 |
UP-28 | NA | NA | NA | NA | NA | NA | NA |
UP-29 | 146 | 141 | 1 | 5 | 140 | 6 | 6 |
UP-30 | 228 | 228 | 16 | 0 | 189 | 41 | 39 |
Total | 41,320 | 29,583 | 2976 | 3678 | 35,383 | 3182 | 5142 |
References
- Hieronymi, U.; Kramme, R. Cardiovascular Monitoring. In Springer Handbook of Medical Technology; Kramme, R., Hoffmann, K.P., Pozos, R.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 955–970. [Google Scholar] [CrossRef]
- Perret-Guillaume, C.; Joly, L.; Benetos, A. Heart Rate as a Risk Factor for Cardiovascular Disease. Prog. Cardiovasc. Dis. 2009, 52, 6–10. [Google Scholar] [CrossRef]
- Polley, C.; Jayarathna, T.; Gunawardana, U.; Naik, G.; Hamilton, T.; Andreozzi, E.; Bifulco, P.; Esposito, D.; Centracchio, J.; Gargiulo, G. Wearable Bluetooth Triage Healthcare Monitoring System. Sensors 2021, 21, 7586. [Google Scholar] [CrossRef] [PubMed]
- Galli, A.; Montree, R.J.H.; Que, S.; Peri, E.; Vullings, R. An Overview of the Sensors for Heart Rate Monitoring Used in Extramural Applications. Sensors 2022, 22, 4035. [Google Scholar] [CrossRef]
- Berbari, E.J. Principles of electrocardiography. In Biomedical Engineering Handbook; Bronzino, J.D., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 231–240. [Google Scholar]
- Nazeran, H. Electrocardiography, Computers in. In Encyclopedia of Medical Devices and Instrumentation, 2nd ed.; Webster, J.G., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 34–51. [Google Scholar]
- Clark, J.W.J. The Origin of Biopotentials. In Medical Instrumentation: Application and Design, 4th ed.; Webster, J.G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 147–158. [Google Scholar]
- Vieau, S.; Iaizzo, P.A. Basic ECG Theory, 12-Lead Recordings and Their Interpretation. In Handbook of Cardiac Anatomy, Physiology and Devices, 3rd ed.; Iaizzo, P.A., Ed.; Springer: Cham, Switzerland, 2015; pp. 321–334. [Google Scholar]
- Sattar, Y.; Chhabra, L. Electrocardiogram; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549803/ (accessed on 7 April 2023).
- Luz, E.J.; Schwartz, W.R.; Cámara-Chávez, G.; Menotti, D. ECG-based heartbeat classification for arrhythmia detection: A survey. Comput. Methods Programs Biomed. 2016, 127, 144–164. [Google Scholar] [CrossRef]
- Landreani, F.; Caiani, E.G. Smartphone accelerometers for the detection of heart rate. Expert Rev. Med. Devices 2017, 14, 935–948. [Google Scholar] [CrossRef] [PubMed]
- De Pinho Ferreira, N.; Gehin, C.; Massot, B. A Review of Methods for Non-Invasive Heart Rate Measurement on Wrist. IRBM 2021, 42, 4–18. [Google Scholar] [CrossRef]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, T.; Tran, N.; Gadhoumi, K.; Pelter, M.M.; Do, D.H.; Lee, R.J.; Colorado, R.; Meisel, K.; Hu, X. Photoplethysmography based atrial fibrillation detection: A review. NPJ Digit. Med. 2020, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Biswas, D.; Simões-Capela, N.; Van Hoof, C.; Van Helleputte, N. Heart Rate Estimation From Wrist-Worn Photoplethysmography: A Review. IEEE Sens. J. 2019, 19, 6560–6570. [Google Scholar] [CrossRef]
- Andreozzi, E.; Sabbadini, R.; Centracchio, J.; Bifulco, P.; Irace, A.; Breglio, G.; Riccio, M. Multimodal Finger Pulse Wave Sensing: Comparison of Forcecardiography and Photoplethysmography Sensors. Sensors 2022, 22, 7566. [Google Scholar] [CrossRef]
- Fine, J.; Branan, K.L.; Rodriguez, A.J.; Boonya-ananta, T.; Ajmal; Ramella-Roman, J.C.; McShane, M.J.; Coté, G.L. Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular Monitoring. Biosensors 2021, 11, 126. [Google Scholar] [CrossRef]
- Ismail, S.; Akram, U.; Siddiqi, I. Heart rate tracking in photoplethysmography signals affected by motion artifacts: A review. EURASIP J. Adv. Signal. Process. 2021, 5, 5. [Google Scholar] [CrossRef]
- Hajar, R. The Pulse in Ancient Medicine Part 1. Heart Views 2018, 19, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Luisada, A.A.; Singhal, A.; Portaluppi, F. Assessment of Left Ventricular Function by Noninvasive Methods. Adv. Cardiol. 1985, 32, 111–141. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.W. On certain molar movements of the human body produced by the circulation of blood. J. Anat. Physiol. 1877, 11, 533–536. [Google Scholar]
- Burger, H.C.; Noordergraaf, A. Physical basis of ballistocardiography. III. Am. Heart J. 1956, 51, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Starr, I. The relation of the ballistocardiogram to cardiac function. Am. J. Cardiol. 1958, 2, 737–747. [Google Scholar] [CrossRef]
- Knoop, A.A. Experimental investigations on ultra-low frequency displacement ballistocardiography: NASA TT F-269. In NASA Contractor Report—NASA CR; National Aeronautics and Space Administration: Washington, DC, USA, 1965; pp. 1–107. [Google Scholar]
- Sadek, I.; Biswas, J.; Abdulrazak, B. Ballistocardiogram signal processing: A review. Health Inf. Sci. Syst. 2019, 7, 10. [Google Scholar] [CrossRef]
- Inan, O.T. Recent advances in cardiovascular monitoring using ballistocardiography. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 5038–5041. [Google Scholar] [CrossRef]
- Zanetti, J.; Salerno, D. Seismocardiography: A new technique for recording cardiac vibrations: Concept, method, and initial observations. J. Cardiovasc. Technol. 1990, 9, 2. [Google Scholar]
- Inan, O.T.; Migeotte, P.F.; Park, K.S.; Etemadi, M.; Tavakolian, K.; Casanella, R.; Zanetti, J.; Tank, J.; Funtova, I.; Prisk, G.K.; et al. Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE J. Biomed. Health Inform. 2015, 19, 1414–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taebi, A.; Solar, B.E.; Bomar, A.J.; Sandler, R.H.; Mansy, H.A. Recent Advances in Seismocardiography. Vibration 2019, 2, 64–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanetti, J.M.; Tavakolian, K. Seismocardiography: Past, present and future. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 7004–7007. [Google Scholar] [CrossRef]
- Crow, R.S.; Hannan, P.; Jacobs, D.; Hedquist, L.; Salerno, D.M. Relationship between Seismocardiogram and Echocardiogram for Events in the Cardiac Cycle. Am. J. Noninvas. Cardiol. 1994, 8, 39–46. [Google Scholar] [CrossRef]
- Khosrow-Khavar, F.; Tavakolian, K.; Blaber, A.; Menon, C. Automatic and Robust Delineation of the Fiducial Points of the Seismocardiogram Signal for Noninvasive Estimation of Cardiac Time Intervals. IEEE Trans. Biomed. Eng. 2017, 64, 1701–1710. [Google Scholar] [CrossRef]
- Di Rienzo, M.; Vaini, E.; Castiglioni, P.; Merati, G.; Meriggi, P.; Parati, G.; Faini, A.; Rizzo, F. Wearable seismocardiography: Towards a beat-by-beat assessment of cardiac mechanics in ambulant subjects. Auton. Neurosci. 2013, 178, 50–59. [Google Scholar] [CrossRef]
- Rappaport, M.B.; Sprague, H.B. The graphic registration of the normal heart sounds. Am. Heart J. 1942, 23, 591–623. [Google Scholar] [CrossRef]
- Dimond, E.G.; Benchimol, A. Phonocardiography. Calif. Med. 1961, 94, 139–146. [Google Scholar]
- Ismail, S.; Siddiqi, I.; Akram, U. Localization and classification of heart beats in phonocardiography signals—A comprehensive review. EURASIP J. Adv. Signal. Process. 2018, 2018, 26. [Google Scholar] [CrossRef] [Green Version]
- Giordano, N.; Knaflitz, M. A Novel Method for Measuring the Timing of Heart Sound Components through Digital Phonocardiography. Sensors 2019, 19, 1868. [Google Scholar] [CrossRef] [Green Version]
- Greenstein, J. Phonocardiography; its application to clinical medicine. S. Afr. Med. J. 1955, 29, 123–134. [Google Scholar]
- Vermarien, H. Phonocardiography. In Encyclopedia of Medical Devices and Instrumentation, 2nd ed.; Webster, J.G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 278–289. [Google Scholar]
- Andreozzi, E.; Fratini, A.; Esposito, D.; Naik, G.; Polley, C.; Gargiulo, G.D.; Bifulco, P. Forcecardiography: A Novel Technique to Measure Heart Mechanical Vibrations onto the Chest Wall. Sensors 2020, 20, 3885. [Google Scholar] [CrossRef]
- Andreozzi, E.; Gargiulo, G.D.; Esposito, D.; Bifulco, P. A Novel Broadband Forcecardiography Sensor for Simultaneous Monitoring of Respiration, Infrasonic Cardiac Vibrations and Heart Sounds. Front. Physiol. 2021, 12, 725716. [Google Scholar] [CrossRef] [PubMed]
- Andreozzi, E.; Centracchio, J.; Punzo, V.; Esposito, D.; Polley, C.; Gargiulo, G.D.; Bifulco, P. Respiration Monitoring via Forcecardiography Sensors. Sensors 2021, 21, 3996. [Google Scholar] [CrossRef] [PubMed]
- Andreozzi, E.; Centracchio, J.; Esposito, D.; Bifulco, P. A Comparison of Heart Pulsations Provided by Forcecardiography and Double Integration of Seismocardiogram. Bioengineering 2022, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Centracchio, J.; Andreozzi, E.; Esposito, D.; Gargiulo, G.D. Respiratory-Induced Amplitude Modulation of Forcecardiography Signals. Bioengineering 2022, 9, 444. [Google Scholar] [CrossRef]
- Centracchio, J.; Andreozzi, E.; Esposito, D.; Gargiulo, G.D.; Bifulco, P. Detection of Aortic Valve Opening and Estimation of Pre-Ejection Period in Forcecardiography Recordings. Bioengineering 2022, 9, 89. [Google Scholar] [CrossRef]
- Centracchio, J.; Esposito, D.; Gargiulo, G.D.; Andreozzi, E. Changes in Forcecardiography Heartbeat Morphology Induced by Cardio-Respiratory Interactions. Sensors 2022, 22, 9339. [Google Scholar] [CrossRef]
- Jafari Tadi, M.; Lehtonen, E.; Pankaala, M.; Saraste, A.; Vasankari, T.; Teras, M.; Koivisto, T. Gyrocardiography: A new non-invasive approach in the study of mechanical motions of the heart. Concept, method and initial observations. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2034–2037. [Google Scholar] [CrossRef]
- Jafari Tadi, M.; Lehtonen, E.; Saraste, A.; Tuominen, J.; Koskinen, J.; Teräs, M.; Airaksinen, J.; Pänkäälä, M.; Koivisto, T. Gyrocardiography: A New Non-invasive Monitoring Method for the Assessment of Cardiac Mechanics and the Estimation of Hemodynamic Variables. Sci. Rep. 2017, 7, 6823. [Google Scholar] [CrossRef]
- Sieciński, S.; Kostka, P.S.; Tkacz, E.J. Gyrocardiography: A Review of the Definition, History, Waveform Description and Applications. Sensors 2020, 20, 6675. [Google Scholar] [CrossRef]
- Dehkordi, P.; Tavakolian, K.; Tadi, M.J.; Zakeri, V.; Khosrow-Khavar, F. Investigating the estimation of cardiac time intervals using gyrocardiography. Physiol. Meas. 2020, 41, 055004. [Google Scholar] [CrossRef]
- D’Mello, Y.; Skoric, J.; Xu, S.; Roche, P.J.R.; Lortie, M.; Gagnon, S.; Plant, D.V. Real-Time Cardiac Beat Detection and Heart Rate Monitoring from Combined Seismocardiography and Gyrocardiography. Sensors 2019, 19, 3472. [Google Scholar] [CrossRef] [Green Version]
- Hossein, A.; Mirica, D.C.; Rabineau, J.; Del Rio, J.I.J.; Morra, S.; Gorlier, D.; Nonclercq, A.; van de Borne, P.; Migeotte, P.F. Accurate Detection of Dobutamine-induced Haemodynamic Changes by Kino-Cardiography: A Randomised Double-Blind Placebo-Controlled Validation Study. Sci. Rep. 2019, 9, 10479. [Google Scholar] [CrossRef] [Green Version]
- Hossein, A.; Rabineau, J.; Gorlier, D.; Del Rio, J.I.J.; van de Borne, P.; Migeotte, P.F.; Nonclercq, A. Kinocardiography Derived from Ballistocardiography and Seismocardiography Shows High Repeatability in Healthy Subjects. Sensors 2021, 21, 815. [Google Scholar] [CrossRef] [PubMed]
- Tendulkar, A.P.; Harken, A.H. Mechanics of the normal heart. J. Card Surg. 2006, 21, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Buckberg, G.; Hoffman, J.I.; Mahajan, A.; Saleh, S.; Coghlan, C. Cardiac mechanics revisited: The relationship of cardiac architecture to ventricular function. Circulation 2008, 118, 2571–2587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloechlinger, S.; Grander, W.; Bryner, J.; Dünser, M.W. Left ventricular rotation: A neglected aspect of the cardiac cycle. Intensive Care Med. 2011, 37, 156–163. [Google Scholar] [CrossRef]
- Yang, C.; Tavassolian, N. A feasibility study on a low-cost, smartphone-based solution of pulse transit time measurement using cardio-mechanical signals. In Proceedings of the IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT), Bethesda, MD, USA, 6–8 November 2017; pp. 93–96. [Google Scholar] [CrossRef]
- Sieciński, S.; Kostka, P.S.; Tkacz, E.J. Heart Rate Variability Analysis on Electrocardiograms, Seismocardiograms and Gyrocardiograms on Healthy Volunteers. Sensors 2020, 20, 4522. [Google Scholar] [CrossRef]
- Siecinski, S.; Kostka, P.S.; Tkacz, E.J. Time Domain And Frequency Domain Heart Rate Variability Analysis on Gyrocardiograms. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 2630–2633. [Google Scholar] [CrossRef]
- Lahdenoja, O.; Hurnanen, T.; Iftikhar, Z.; Nieminen, S.; Knuutila, T.; Saraste, A.; Kiviniemi, T.; Vasankari, T.; Airaksinen, J.; Pänkäälä, M.; et al. Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone. IEEE J. Biomed. Health Inform. 2018, 22, 108–118. [Google Scholar] [CrossRef]
- Iftikhar, Z.; Lahdenoja, O.; Jafari Tadi, M.; Hurnanen, T.; Vasankari, T.; Kiviniemi, T.; Airaksinen, J.; Koivisto, T.; Pänkäälä, M. Multiclass Classifier based Cardiovascular Condition Detection Using Smartphone Mechanocardiography. Sci. Rep. 2018, 8, 9344. [Google Scholar] [CrossRef]
- Hurnanen, T.; Kaisti, M.; Jafari Tadi, M.; Vähä-Heikkilä, M.; Nieminen, S.; Iftikhar, Z.; Paukkunen, M.; Pänkäälä, M.; Koivisto, T. Heartbeat Detection Using Multidimensional Cardiac Motion Signals and Dynamic Balancing. In Proceedings of the European Medical and Biological Engineering Confernce (EMBEC) & Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC), Tampere, Finland, 11–15 June 2017. [Google Scholar] [CrossRef]
- Jafari Tadi, M.; Lehtonen, E.; Teuho, J.; Saraste, A.; Pänkäälä, M.; Teräs, M.; Koivisto, T. A miniaturized MEMS motion processing system for nuclear medicine imaging applications. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016. [Google Scholar]
- Jafari Tadi, M.; Teuho, J.; Lehtonen, E.; Saraste, A.; Pänkäälä, M.; Koivisto, T.; Teräs, M. A novel dual gating approach using joint inertial sensors: Implications for cardiac PET imaging. Phys. Med. Biol. 2017, 62, 8080–8101. [Google Scholar] [CrossRef] [Green Version]
- Jafari Tadi, M.; Lehtonen, E.; Teuho, J.; Koskinen, J.; Schultz, J.; Siekkinen, R.; Koivisto, T.; Pänkäälä, M.; Teräs, M.; Klén, R. A Computational Framework for Data Fusion in MEMS-Based Cardiac and Respiratory Gating. Sensors 2019, 19, 4137. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, J.E.; Cretu, E. Simple Heart Rate Monitoring System with a MEMS Gyroscope for Sleep Studies. In Proceedings of the Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 1–3 November 2018; pp. 61–67. [Google Scholar] [CrossRef]
- Kaisti, M.; Jafari Tadi, M.; Lahdenoja, O.; Hurnanen, T.; Saraste, A.; Pänkäälä, M.; Koivisto, T. Stand-Alone Heartbeat Detection in Multidimensional Mechanocardiograms. IEEE Sens. J. 2019, 19, 234–242. [Google Scholar] [CrossRef]
- Jia, W.; Li, Y.; Bai, Y.; Mao, Z.-H.; Sun, M.; Zhao, Q. Estimation of heart rate from a chest-worn inertial measurement unit. In Proceedings of the 2015 International Symposium on Bioelectronics and Bioinformatics (ISBB), Beijing, China, 14–17 October 2015; pp. 148–151. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H.; Whang, M. An Enhanced Method to Estimate Heart Rate from Seismocardiography via Ensemble Averaging of Body Movements at Six Degrees of Freedom. Sensors 2018, 18, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboulezz, E.; Skoric, J.; D’Mello, Y.; Hakim, S.; Clairmonte, N.; Lortie, M.; Plant, D.V. Analyzing Heart Rate Estimation from Vibrational Cardiography with Different Orientations. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 2638–2641. [Google Scholar] [CrossRef]
- Lahdenoja, O.; Humanen, T.; Jafari Tadi, M.; Pänkäälä, M.; Koivisto, T. Heart rate variability estimation with joint accelerometer and gyroscope sensing. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 717–720. [Google Scholar]
- Hu, Y.; Wong, Y.; Wei, W.; Du, Y.; Kankanhalli, M.; Geng, W. A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLoS ONE 2018, 13, e02060492018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Wulan, N.; Wang, K.; Zhang, H. Detecting atrial fibrillation by deep convolutional neural networks. Comput. Biol. Med. 2018, 93, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Ji, J.; Zhou, X.; Zhou, Y. Hybrid spiking neural network for sleep electroencephalogram signals. Sci. China Inf. Sci. 2022, 65, 140403. [Google Scholar] [CrossRef]
- Duraj, K.M.; Siecinski, S.; Doniec, R.J.; Piaseczna, N.J.; Kostka, P.S.; Tkacz, E.J. Heartbeat detection in seismocardiograms with semantic segmentation. In Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 662–665. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Lin, Z.; Huat Ng, S. Automated and precise heartbeat detection in ballistocardiography signals using bidirectional LSTM. Franklin Open 2022, 1, 30–38. [Google Scholar] [CrossRef]
- Yoo, J.C.; Han, T.H. Fast Normalized Cross-Correlation. Circuits Syst. Signal Process 2009, 28, 819–843. [Google Scholar] [CrossRef]
- Briechle, K.; Hanebeck, U.D. Template matching using fast normalized cross correlation. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) 4387, Optical Pattern Recognition XII, Orlando, FL, USA, 20 March 2001. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, H.H.; Chen, T.C.; Chen, L.G. Robust heart rate measurement with phonocardiogram by on-line template extraction and matching. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston, MA, USA, 30 August–3 September 2011; pp. 1957–1960. [Google Scholar] [CrossRef]
- Centracchio, J.; Parlato, S.; Esposito, D.; Bifulco, P.; Andreozzi, E. ECG-Free Heartbeat Detection in Seismocardiography Signals via Template Matching. Sensors 2023, 23, 4684. [Google Scholar] [CrossRef]
- Yang, C.; Fan, F.; Aranoff, N.; Green, P.; Li, Y.; Liu, C.; Tavassolian, N. An Open-Access Database for the Evaluation of Cardio-Mechanical Signals From Patients with Valvular Heart Diseases. Front. Physiol. 2021, 12, 750221. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Sedghamiz, H. BioSigKit: A Matlab Toolbox and Interface for Analysis of BioSignals. J. Open. Source Softw. 2018, 3, 671. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Bland, J.M. Measurement in medicine: The analysis of method comparison studies. Statistician 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, K. Bland-Altman and Correlation Plot, MATLAB Central File Exchange. 2020. Available online: https://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot (accessed on 15 March 2023).
- Işilay Zeybek, Z.M.; Racca, V.; Pezzano, A.; Tavanelli, M.; Di Rienzo, M. Can Seismocardiogram Fiducial Points Be Used for the Routine Estimation of Cardiac Time Intervals in Cardiac Patients? Front. Physiol. 2022, 13, 825918. [Google Scholar] [CrossRef] [PubMed]
Sample size | N° of subjects | 95 |
N° of compared inter-beat intervals | 31,831 | |
Performance of heartbeat detection | Sensitivity (%) | 87 |
PPV (%) | 92 | |
Results of regression analysis | Slope | 0.995 |
Intercept (ms) | 4.06 | |
R2 | 0.9985 | |
Results of correlation analysis | r | 0.9993 (p < 0.001) |
Results of Bland-Altman analysis | Bias (ms) | 0.15 (p < 0.001) |
95% CIbias (ms) | [0.08, 0.22] | |
LoA (ms) | [−12.85, 13.15] | |
95% CILoA (ms) | [−12.97, 13.27] |
GCG | SCG | ||
---|---|---|---|
Sample size | N° of subjects | 76 | 76 |
N° of compared inter-beat intervals | 26,308 | 26,913 | |
Performance of heartbeat detection | Sensitivity (%) | 89 | 90 |
PPV (%) | 93 | 91.5 | |
Results of regression analysis | Slope | 0.995 | 0.995 |
Intercept (ms) | 4.51 | 3.92 | |
R2 | 0.9987 | 0.9986 | |
Results of correlation analysis | r | 0.9993 (p < 0.001) | 0.9993 (p < 0.001) |
Results of Bland-Altman analysis | Bias (ms) | 0.16 (p < 0.001) | 0.09 (p = 0.09) |
95% CIbias (ms) | [0.09, 0.23] | [0.01, 0.17] | |
LoA (ms) | [−11.84, 12.16] | [−12.91, 13.09] | |
95% CILoA (ms) | [−11.97, 12.29] | [−13.05, 13.23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parlato, S.; Centracchio, J.; Esposito, D.; Bifulco, P.; Andreozzi, E. Heartbeat Detection in Gyrocardiography Signals without Concurrent ECG Tracings. Sensors 2023, 23, 6200. https://doi.org/10.3390/s23136200
Parlato S, Centracchio J, Esposito D, Bifulco P, Andreozzi E. Heartbeat Detection in Gyrocardiography Signals without Concurrent ECG Tracings. Sensors. 2023; 23(13):6200. https://doi.org/10.3390/s23136200
Chicago/Turabian StyleParlato, Salvatore, Jessica Centracchio, Daniele Esposito, Paolo Bifulco, and Emilio Andreozzi. 2023. "Heartbeat Detection in Gyrocardiography Signals without Concurrent ECG Tracings" Sensors 23, no. 13: 6200. https://doi.org/10.3390/s23136200
APA StyleParlato, S., Centracchio, J., Esposito, D., Bifulco, P., & Andreozzi, E. (2023). Heartbeat Detection in Gyrocardiography Signals without Concurrent ECG Tracings. Sensors, 23(13), 6200. https://doi.org/10.3390/s23136200