An MMIC LNA for Millimeter-Wave Radar and 5G Applications with GaN-on-SiC Technology
Abstract
:1. Introduction
2. Analysis and Design of MMIC LNA
2.1. Device Characteristics
2.2. Stability Analysis and Enhancement
2.3. Co-Design Strategy for Broadband Matching and Low NF
3. Implementation and Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oh, H.-M.; Kim, J.-S.; Lim, J.-T.; Kim, C.-Y. A 2.4-GHz High Conversion Gain Passive Mixer Using Q-Boosted π-Type LCL Matching Networks in 90-nm CMOS. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 736–738. [Google Scholar] [CrossRef]
- Yin, R.; Zhang, Z.; Xiong, H.; Zhang, G. A 2.4-GHz Fully-Integrated GaAs pHEMT Front-End Receiver for WLAN and Bluetooth Applications. Appl. Sci. 2023, 13, 65. [Google Scholar] [CrossRef]
- Florian, C.; Traverso, P.A.; Santarelli, A. A Ka-Band MMIC LNA in GaN-on-Si 100-nm Technology for High Dynamic Range Radar Receivers. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 161–164. [Google Scholar] [CrossRef]
- Pace, L.; Longhi, P.E.; Ciccognani, W.; Colangeli, S.; Vitulli, F.; Deborgies, F.; Limiti, E. DC Power-Optimized Ka-Band GaN-on-Si Low-Noise Amplifier With 1.5 dB Noise Figure. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 555–558. [Google Scholar] [CrossRef]
- Yi, X.; Feng, G.Y.; Liang, Z.P.; Wang, C.; Liu, B.; Li, C.Y.; Yang, K.T.; Boon, C.C.; Xueet, Q. A 24/77 GHz Dual-Band Receiver for Automotive Radar Applications. IEEE Access 2019, 7, 48053–48059. [Google Scholar] [CrossRef]
- Ginsburg, B.P.; Subburaj, K.; Samala, S.; Ramasubramanian, K.; Singh, J.; Bhatara, S.; Muraliet, S.; Breen, D.; Moallem, M.; Dandu, K.; et al. A multimode 76-to-81GHz automotive radar transceiver with autonomous monitoring. In Proceedings of the 2018 IEEE International Solid—State Circuits Conference—(ISSCC), San Francisco, CA, USA, 11–15 February 2018. [Google Scholar]
- Tong, X.; Wang, R.; Zhang, S.; Xu, J.; Zheng, P.; Chen, F.-X. Degradation of Ka-Band GaN LNA Under High-Input Power Stress: Experimental and Theoretical Insights. IEEE Trans. Electron Devices 2021, 31, 1287–1290. [Google Scholar] [CrossRef]
- Xie, H.; Cheng, Y.J.; Fan, Y. A K-Band High Interference-Rejection GaAs Low-Noise Amplifier Using Multizero Control Method for Satellite Communication. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 1069–1072. [Google Scholar] [CrossRef]
- Yan, X.; Yu, P.Y.; Zhang, J.Y.; Gao, S.-P.; Guo, Y.X. A Broadband 10–43-GHz High-Gain LNA MMIC Using Coupled-Line Feedback in 0.15-μm GaAs pHEMT Technology. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 1459–1462. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, L.; Xu, J.; Wang, R.; Zheng, P.; Wang, H.; Li, M.; Tong, X. Robust GaN-Based LNAs With Active Epitaxial Current Limiters. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 1287–1290. [Google Scholar] [CrossRef]
- Ahn, H.B.; Ji, H.-G.; Choi, Y.; Lee, S.; Kang, D.M.; Han, J. 25–31 GHz GaN-Based LNA MMIC Employing Hybrid-Matching Topology for 5G Base Station Applications. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 47–50. [Google Scholar] [CrossRef]
- Peng, L.; Chen, J.Q.; Zhang, Z.H.; Huang, Y.; Wang, T.; Zhang, G. Design of broadband high-gain GaN MMIC power amplifier based on reactive/resistive matching and feedback technique. IEICE Electron. Express 2021, 18, 20210313. [Google Scholar] [CrossRef]
- Cai, Q.; Zhu, H.; Zeng, D.; Xue, Q.; Che, W. A Three-Stage Wideband GaN PA for 5G mm-Wave Applications. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4724–4728. [Google Scholar] [CrossRef]
- Mayeda, J.C.; Lie, D.Y.C.; Lopez, J. A Highly Efficient 18–40 GHz Linear Power Amplifier in 40-nm GaN for mm-Wave 5G. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 1008–1011. [Google Scholar] [CrossRef]
- Maroldt, S.; Ercoli, M. 3.5-GHz ultra-compact GaN class-E integrated Doherty MMIC PA for 5G massive-MIMO base station applications. In Proceedings of the 2017 12th European Microwave Integrated Circuits Conference (EuMIC), Nuremberg, Germany, 8–10 October 2017. [Google Scholar]
- Xu, Y.H.; Chen, Z.K.; Xu, R.M. Statistical models for microwave GaN HEMTs. In Proceedings of the 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chengdu, China, 20–22 July 2016. [Google Scholar]
- Liu, Z.H.; Ng, G.I.; Arulkumaran, S. Analytical Modeling of High-Frequency Noise Including Temperature Effects in GaN HEMTs on High-Resistivity Si Substrates. IEEE Trans. Electron Devices 2010, 57, 1485–1491. [Google Scholar] [CrossRef]
- Crupi, G.; Caddemi, A.; Raffo, A.; Salvo, G.; Nalli, A.; Vannini, G. GaN HEMT noise modeling based on 50-Ω noise factor. Microw. Opt. Technol. Lett. 2015, 57, 937–942. [Google Scholar] [CrossRef]
- Qin, P.; Xue, Q. Compact Wideband LNA With Gain and Input Matching Bandwidth Extensions by Transformer. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 657–659. [Google Scholar] [CrossRef]
- Sanabria, C.; Xu, H.T.; Palacios, T.; Chakraborty, A.; Heikman, S.; Mishra, U.; York, R. Influence of epitaxial structure in the noise figure of AlGaN/GaN HEMTs. IEEE Trans. Microw. Theory Tech. 2005, 53, 53,762–769. [Google Scholar] [CrossRef]
- Lu, B.-Z.; Wang, Y.; Wu, Y.-C.; Chiong, C.-C.; Wang, H. A Submilliwatt K-Band Low-Noise Amplifier for Next Generation Radio Astronomical Receivers in 65-nm CMOS Process. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 669–672. [Google Scholar] [CrossRef]
- Liu, J.Y.; Liu, S.B.; Zhou, R.; Gao, Y.N.; Zhang, T.; Liu, X.X.; Zhu, Z.M.; Wu, L. A 26–31 GHz Linearized Wideband CMOS LNA Using Post-Distortion Technique. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 1087–1090. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zhou, R.L. A K-Band Ultra-Compact Gm-Boost LNA Using One Multi-Coupled Transformer in 65-nm CMOS. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 976–978. [Google Scholar] [CrossRef]
- Yan, X.; Luo, H.R.; Zhang, J.Y.; Zhang, H.; Guo, Y.X. Design and Analysis of a Cascode Distributed LNA With Gain and Noise Improvement in 0.15-μm GaAs pHEMT Technology. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4659–4663. [Google Scholar] [CrossRef]
- Nguyen, N.; Phan, K.; Lee, S.; Huynh, C. A 35–37 GHz MMIC GaN Low Noise Amplifier. In Proceedings of the 2021 International Symposium on Electrical and Electronics Engineering (ISEE), Ho Chi Minh, Vietnam, 15–16 April 2021. [Google Scholar]
- Yang, X.; Zhang, Z.; Liu, H.; Zhang, G.; Wang, T.; Huang, Y.; Wang, Q.Y.; Luo, L.W. A K-band MMIC low noise amplifier in GaN-on-Si 100-nm technology for MIMO radar receivers. IEICE Electron. Express 2022, 19, 20200454. [Google Scholar] [CrossRef]
- Rudolph, M.; Chaturvedi, N.; Hirche, K.; Wurfl, J.; Heinrich, W.; Trankle, G. Highly Rugged 30 GHz GaN Low-Noise Amplifiers. IEEE Microw. Wirel. Compon. Lett. 2009, 4, 251–253. [Google Scholar] [CrossRef]
- Suijker, E.M.; Roderburg, M.; Hoogland, J.A.; Heijningen, M.V.; Seelmann-Eggebert, M.; Quay, R.; Brückner, P.; Vliet, F.E.V. Robust AlGaN/GaN Low Noise Amplifier MMICs for C-, Ku- and Ka-Band Space Applications. In Proceedings of the Annual IEEE Compound Semiconductor Integrated Circuit Symposium, Greensboro, NC, USA, 11–14 October 2009. [Google Scholar]
- Chen, M.Q.; Sutton, W.; Smorchkova, I.; Heyin, B.; Luo, W.-B.; Gambin, V.; Oshita, F.; Tsai, R.; Wojtowicz, M.; Kagiwada, R.; et al. A 1–25 GHz GaN HEMT MMIC Low-Noise Amplifier. IEEE Microw. Wirel. Compon. Lett. 2010, 10, 563–565. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, L.; Zheng, P.; Zhang, S.; Xu, J.; Wang, R. An 18–56-GHz Wideband GaN Low-Noise Amplifier With 2.2–4.4-dB Noise Figure. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 1153–1156. [Google Scholar] [CrossRef]
- Chang, W.; Park, Y.-R.; Mun, J.-K.; Ko, S.-C.; Jeon, G.-I. Compact 10-13 GHz GaN low noise amplifier MMIC using simple matching and bias circuits. In Proceedings of the 2014 9th European Microwave Integrated Circuit Conference, Rome, Italy, 6–7 October 2014. [Google Scholar]
- Axelsson, O.; Thorsell, M.; Andersson, K.; Rorsman, N. The Effect of Forward Gate Bias Stress on the Noise Performance of Mesa Isolated GaN HEMTs. IEEE Trans. Device Mater. Reliab. 2015, 15, 40–46. [Google Scholar] [CrossRef]
- Nalli, A.; Raffo, A.; Crupi, G.; D’Angelo, S.; Resca, D.; Scappaviva, F.; Salvo, G.; Caddemi, A.; Vannini, G. GaN HEMT Noise Model Based on Electromagnetic Simulations. IEEE Trans. Microw. Theory Technol. 2015, 63, 2498–2508. [Google Scholar] [CrossRef]
- Wang, R.; Li, C.; Zhang, J.; Yin, S.; Zhu, W.; Wang, Y. A 18–44 GHz Low Noise Amplifier With Input Matching and Bandwidth Extension Techniques. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 1083–1086. [Google Scholar] [CrossRef]
- Lee, J.; Hong, S. A 21–41-GHz Common-Gate LNA With TLT Matching Networks in 28-nm FDSOI CMOS. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 1051–1054. [Google Scholar] [CrossRef]
- Chen, H.C.; Zhu, H.S.; Wu, L.; Xue, Q.; Che, W.Q. A 7.2–27.3 GHz CMOS LNA With 3.51 ± 0.21 dB Noise Figure Using Multistage Noise Matching Technique. IEEE Trans. Microw. Theory Tech. 2022, 70, 74–84. [Google Scholar] [CrossRef]
- Nawaz, A.A.; Albrecht, J.D.; Çağrı Ulusoy, A. A Ka/V Band-Switchable LNA With 2.8/3.4 dB Noise Figure. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 662–664. [Google Scholar] [CrossRef]
Ref. | Process | Freq (GHz) | Gain (dB) | NF (dB) | Area (mm2) | Power (mW) | Stages |
---|---|---|---|---|---|---|---|
[20] | CMOS | 15.8–30.3 | 8.5–10.2 | 3.3–5.7 | 0.18 | 12.4 | 2 |
[21] | CMOS | 21.2–24 | 16.5–19.1 | 3.6–4.2 | 0.35 | 0.99 | 2 |
[22] | CMOS | 26–31 | 9.6–12 | 5.0–5.45 | 0.19 | 14.4 | 3 |
[23] | CMOS | 21–34.5 | 10.5 | 2.4–3.9 | 0.03 | 4 | 2 |
[24] | GaAs | 2–42 | 12.6–14.1 | 2.4 | 1.53 | 129 | 11 |
[25] | GaN-on-Si | 35–37 | 19.7 | 3.7 | 5.21 | / | 4 |
[26] | GaN-on-Si | 18–22.5 | 16.5–17.9 | 2.0–2.3 | 2.2 | 1100 | 2 |
[27] | GaN-on-SiC | 27–31 | 12 | 3.7–3.9 | 4.08 | 560 | 4 |
[28] | GaN-on-SiC | 27.5–28.5 | 18 | 4 | 6 | 6000 | 4 |
[29] | GaN-on-SiC | 1–25 | 10–13 | 3.3–5 | 1.44 | 900 | 2 |
This Work | GaN-on-SiC | 24.25–29.5 | 18.3–20.2 | 2.5–3.1 | 3.75 | 500 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Zhang, Z.; Wang, X.; Liu, H.; Zhang, G. An MMIC LNA for Millimeter-Wave Radar and 5G Applications with GaN-on-SiC Technology. Sensors 2023, 23, 6611. https://doi.org/10.3390/s23146611
Huang C, Zhang Z, Wang X, Liu H, Zhang G. An MMIC LNA for Millimeter-Wave Radar and 5G Applications with GaN-on-SiC Technology. Sensors. 2023; 23(14):6611. https://doi.org/10.3390/s23146611
Chicago/Turabian StyleHuang, Chaoyu, Zhihao Zhang, Xinjie Wang, Hailiang Liu, and Gary Zhang. 2023. "An MMIC LNA for Millimeter-Wave Radar and 5G Applications with GaN-on-SiC Technology" Sensors 23, no. 14: 6611. https://doi.org/10.3390/s23146611
APA StyleHuang, C., Zhang, Z., Wang, X., Liu, H., & Zhang, G. (2023). An MMIC LNA for Millimeter-Wave Radar and 5G Applications with GaN-on-SiC Technology. Sensors, 23(14), 6611. https://doi.org/10.3390/s23146611