Compensation of Heat Effect in Dielectric Barrier Discharge (DBD) Plasma System for Radar Cross-Section (RCS) Reduction
Abstract
:1. Introduction
2. Experimental Setup for Measuring Thermal Deformation
2.1. Proposed DBD Generator
2.2. Experimental Setup for RCS Measurements and Thermal Deformation Analysis of DBD Structures
2.3. Heat Effect in the DBD Plasma System
3. Solution for DBD Deformation Due to Heat
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knott, E.F.; Schaeffer, J.F.; Tulley, M.T. Radar Cross Section; SciTech Publishing: New York, NY, USA, 2004. [Google Scholar]
- Robinson, C.A.; Maxwell, J.C. Radar counters camouflage. In Signal; Clarendon: Oxford, UK, 2007; Volume 2, pp. 68–73. [Google Scholar]
- MacDonald, D.; Isenman, J.; Roman, J. Radar detection of hidden targets. In Proceedings of the IEEE 1997 National Aerospace and Electronics Conference, NAECON 1997, Dayton, OH, USA, 14–17 July 1997. [Google Scholar]
- Jiang, W.; Liu, Y.; Gong, S.; Hong, T. Application of bionics in antenna radar cross section reduction. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1275–1278. [Google Scholar] [CrossRef]
- Wang, W.; Gong, S.; Wang, X.; Guan, Y.; Jiang, W. Differential evolution algorithm and method of moments for the design of low-RCS antenna. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 295–298. [Google Scholar] [CrossRef]
- Khan, T.A.; Li, J.; Li, Z.; Abdullah, M.; Chen, J.; Zhang, A. Design of a Vivaldi antenna with wideband reduced radar cross section. AEU-Int. J. Electron. Commun. 2018, 95, 47–51. [Google Scholar] [CrossRef]
- Oh, Y.; Chang, J.G.; Shoshany, M. An improved radiative transfer model for polarimetric backscattering from agricultural fields at C-and X-bands. J. Electromagn. Eng. Sci. 2020, 21, 104–110. [Google Scholar] [CrossRef]
- Choi, W.-H.; Song, W.-H.; Lee, W.-J. Broadband radar absorbing structures with a practical approach from design to fabrication. J. Electromagn. Eng. Sci. 2020, 20, 254–261. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Zhou, P.-H.; Chen, L.; Deng, L.-J. Study on the properties of surface waves in coated RAM layers and monostatic RCSR performances of the coated slab. Prog. Electromagn. Res. M 2010, 11, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Lyou, M.; Kim, G.; Lee, B. Design of thin and wideband microwave absorbers using general closed-form solutions. J. Electromagn. Eng. Sci. 2021, 21, 430–438. [Google Scholar] [CrossRef]
- Narayan, S.; Sreeja, J.; Surya, V.; Sangeetha, B.; Nair, R.U. Radar absorbing structures using frequency selective surfaces: Trends and perspectives. J. Electron. Mater. 2020, 49, 1728–1741. [Google Scholar] [CrossRef]
- Zhao, Y.-T.; Chen, B.; Wu, B. Miniaturized periodicity broadband absorber with via-based hybrid metal-graphene structure for large-angle RCS reduction. IEEE Trans. Antennas Propag. 2021, 70, 2832–2840. [Google Scholar] [CrossRef]
- Thomas, P.; Abdulhakim, L.V.; Pushkaran, N.K.; Karuvandi, A.C. Wideband radar absorbing structure using polyaniline-graphene nanocomposite. C 2020, 6, 72. [Google Scholar] [CrossRef]
- Ashraf, R.; Tabassum, S.T.; Tahmid, R.; Hossam-E-Haider, M. Performance Analysis of Radar Cross Section for F-117 Nighthawk Stealth Aircraft over Frequency and Aspect Angle. In Proceedings of the 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 8–9 February 2018. [Google Scholar]
- Singh, H.; Antony, S.; Jha, R.M.; Singh, H.; Antony, S.; Jha, R.M. Plasma-Based Radar Cross Section Reduction; Springer: Singapore, 2016. [Google Scholar]
- Jaggard, D.L. Investigation on application of closed cavity inductively coupled plasma in inlet stealth. IOP Conf. Ser. Mater. Sci. Eng. 2020, 751, 012069. [Google Scholar]
- Song, S.; Cho, C.; Oh, T.; Kim, S.; Ahn, W.; Yook, J.-G.; Lee, J.; You, S.; Yim, J.; Ha, J. Effect of driving frequency on reduction of radar cross section due to dielectric-barrier-discharge plasma in Ku-band. IEEE Trans. Plasma Sci. 2021, 49, 1548–1556. [Google Scholar] [CrossRef]
- Oh, T.; Cho, C.; Ahn, W.; Yook, J.-G.; Lee, J.; You, S.; Yim, J.; Ha, J.; Bae, G.; You, H.-C. Plasma generator with dielectric rim and fss electrode for enhanced RCS reduction effect. Sensors 2021, 21, 8486. [Google Scholar] [CrossRef] [PubMed]
- Ghayekhloo, A.; Afsahi, M.; Orouji, A.A. Checkerboard plasma electromagnetic surface for wideband and wide-angle bistatic radar cross section reduction. IEEE Trans. Plasma Sci. 2017, 45, 603–609. [Google Scholar] [CrossRef]
- Malhat, H.A.; Zainud-Deen, S.H.; Shabayek, N.A. RCS reduction from conformal surfaces using plasma-based AMC arrays. Plasmonics 2020, 15, 1025–1033. [Google Scholar] [CrossRef]
- Zhang, Z.; Nie, Q.; Wang, X.; Zeng, J. Numerical investigation of the directional control of electron density and gas temperature in atmospheric pressure dielectric barrier discharge by using low-and high-frequency coupling modulation. Phys. Plasmas 2021, 28, 083508. [Google Scholar] [CrossRef]
- Jeong, J.; Cho, C.; Lee, Y.; Ha, J.; Yim, J.; You, S.; Choi, M. Improved Estimation Method for Effect of DBD (Dielectric Barrier Discharge) Plasma on RCS (Radar Cross Section) Reduction. In Proceedings of the 2023 International Conference on Electronics, Information, and Communication (ICEIC), Singapore, 5–8 February 2023. [Google Scholar]
- OptoNCDT 1420 Laser. Micro-Epsilon Messtechnik GmbH & Co. KG, Ortenburg, Germany, 2019. Available online: https://www.micro-epsilon.com (accessed on 5 June 2022).
- FLK-PTI120. Fluke Corporation, Everett, WA, USA, 2021. Available online: https://www.fluke.com (accessed on 5 June 2022).
- CST MICROWAVE STUDIO™. Available online: https://www.cst.com (accessed on 9 November 2022).
- Hartmann, M.; Ingold, G.-L.; Neto, P.A.M. Plasma versus Drude modeling of the Casimir force: Beyond the proximity force approximation. Phys. Rev. Lett. 2017, 119, 043901. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, C.; Zhou, Z.; Li, L.; Du, Y. Propagation of Gaussian laser beam in cold plasma of Drude model. Phys. Plasmas 2011, 18, 113105. [Google Scholar] [CrossRef]
- Yuan, Z.-c.; Shi, J.-m. Collisional, nonuniform plasma sphere scattering calculation by FDTD employing a Drude model. Int. J. Infrared Millim. Waves 2007, 28, 987–992. [Google Scholar]
- You, K.; You, S.; Kim, D.; Na, B.; Seo, B.; Kim, J.; Chang, H. Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe. Phys. Plasmas 2016, 23, 033509. [Google Scholar] [CrossRef]
- Ghayekhloo, A.; Abdolali, A.; Armaki, S.H.M. Observation of radar cross-section reduction using low-pressure plasma-arrayed coating structure. IEEE Trans. Antennas Propag. 2017, 65, 3058–3064. [Google Scholar] [CrossRef]
Acrylic Block | Aluminum Heat Sink | |
---|---|---|
Temperature (°C) | 120 | 52 |
Degree of deformation (mm) | 2.8 (±0.3) | 1.6 (±0.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.; Cho, C.; Choi, M.; You, S.; Ha, J.; Lee, H.; Kim, C.; Oh, I.; Lee, Y. Compensation of Heat Effect in Dielectric Barrier Discharge (DBD) Plasma System for Radar Cross-Section (RCS) Reduction. Sensors 2023, 23, 7121. https://doi.org/10.3390/s23167121
Jung J, Cho C, Choi M, You S, Ha J, Lee H, Kim C, Oh I, Lee Y. Compensation of Heat Effect in Dielectric Barrier Discharge (DBD) Plasma System for Radar Cross-Section (RCS) Reduction. Sensors. 2023; 23(16):7121. https://doi.org/10.3390/s23167121
Chicago/Turabian StyleJung, Jinwoo, Changseok Cho, Minsu Choi, Shinjae You, Jungje Ha, Hyunsoo Lee, Cheonyoung Kim, Ilyoung Oh, and Yongshik Lee. 2023. "Compensation of Heat Effect in Dielectric Barrier Discharge (DBD) Plasma System for Radar Cross-Section (RCS) Reduction" Sensors 23, no. 16: 7121. https://doi.org/10.3390/s23167121
APA StyleJung, J., Cho, C., Choi, M., You, S., Ha, J., Lee, H., Kim, C., Oh, I., & Lee, Y. (2023). Compensation of Heat Effect in Dielectric Barrier Discharge (DBD) Plasma System for Radar Cross-Section (RCS) Reduction. Sensors, 23(16), 7121. https://doi.org/10.3390/s23167121