End-Cloud Collaboration Navigation Planning Method for Unmanned Aerial Vehicles Used in Small Areas
Abstract
:1. Introduction
2. System Architecture and Algorithm Design
2.1. UAV Navigation Planning Modeling
- Flight distance
- Flight altitude
- Distance from the UAV to obstacles
- Distance between UAVs
- Dynamic constraints of UAVs
2.2. UAV Navigation Planning Algorithm Design
2.2.1. End-Cloud Collaboration Navigation Planning Algorithm Architecture
2.2.2. Background Cloud Navigation Planning Part
- Inertia weight
- Learning factors and
- Population size and topological structure second bullet
- Maximum particle flying speed,
2.2.3. UAV Onboard Navigation Planning Part
- If the individual optimal particle in the previous iteration weighted dominates the new particle, the individual optimal particle remains unchanged and the optimal position of the particle is not updated;
- If the individual optimal particle in the previous iteration is weight-dominated by the new particle, the new particle becomes the individual optimal particle, and the historical optimal position of the particle is updated;
- If the two are not weight-dominated to each other, a 50% probability is used to choose whether to update the optimal position of the particle or not.
3. Experimental Design and Analysis
3.1. Simulation Experiment Verification and Analysis
3.1.1. Environmental Modeling and Algorithm Parameter Setting
3.1.2. Experimental Steps and Result Analysis
- Step1: Start the simulation software and select the UAV end-cloud collaborative navigation planning algorithm;
- Step2: Set environmental conditions and task target points and allocate them;
- Step3: Set the parameters of the E-CPSO navigation planning algorithm;
- Step4: Start UAV background cloud and onboard navigation planning simulation, obtain the approximate trajectory and precise trajectory of UAVs;
- Step5: Set the parameters of traditional PSO, IPSO, GAPSO, CA and ACA, and start the UAV navigation planning simulation;
- Step6: Observe and record the navigation planning results of the algorithms;
- Step7: Draw graphs of the number of iterations and evaluation function separately and conduct comparative analysis;
- Step8: End the experiment.
3.2. Verification of Actual Flight Experiments of UAVs
- Step1: Start drones and ground control station loaded with the UAV end-cloud collaborative navigation planning algorithms;
- Step2: The ground control station calculates the track point position and sends it to the drones based on prior environmental information;
- Step3: The drones fly toward the target trajectory point position, continuously calculating and optimizing their own trajectory during the flight process, and transmit the trajectory and observed environmental information back to the ground station;
- Step4: The ground station further calculates the trajectory points based on the environmental information transmitted by the drone and sends them to the drone;
- Step5: Repeat step 3 and 4 until the drones complete obstacle avoidance and reach the final target point, and display the dynamic trajectory of the drones.
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oh, D.; Han, J. Smart Search System of Autonomous Flight UAVs for Disaster Rescue. Sensors 2021, 21, 6810. [Google Scholar] [CrossRef]
- Han, S.I.; Baek, J. Optimal UAV Deployment and Resource Management in UAV Relay Networks. Sensors 2021, 21, 6878. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, S.; Feng, O.; Tian, T.; Huang, Y.; Zhong, G. Research on Demand-Based Scheduling Scheme of Urban Low-Altitude Logistics UAVs. Appl. Sci. 2023, 13, 5370. [Google Scholar] [CrossRef]
- Costa, L.S.; Sano, E.E.; Ferreira, M.E.; Munhoz, C.B.R.; Costa, J.V.S.; Rufino Alves Júnior, L.; de Mello, T.R.B.; da Cunha Bustamante, M.M. Woody Plant Encroachment in a Seasonal Tropical Savanna: Lessons about Classifiers and Accuracy from UAV Images. Remote Sens. 2023, 15, 2342. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, Z.; Bao, X. Autonomous Trajectory Planning Method for Multi-UAV Collaborative Search. In Proceedings of the 2021 5th International Conference on Automation, Control and Robots (ICACR), Nanning, China, 25–27 September 2021; pp. 84–88. [Google Scholar]
- Goel, U.; Varshney, S.; Jain, A.; Maheshwari, S.; Shukla, A. Three dimensional path planning for UAVs in dynamic environment using glow-worm swarm optimization. Procedia Comput. Sci. 2018, 133, 230–239. [Google Scholar] [CrossRef]
- Ju, C.; Son, H.I. Multiple UAV Systems for Agricultural Applications: Control, Implementation, and Evaluation. Electronics 2018, 7, 162. [Google Scholar] [CrossRef] [Green Version]
- Tong, P.; Yang, X.; Yang, Y.; Liu, W.; Wu, P. Multi-UAV Collaborative Absolute Vision Positioning and Navigation: A Survey and Discussion. Drones 2023, 7, 261. [Google Scholar] [CrossRef]
- Sadiq, M.S.; Ruan, C.; Nawaz, H.; Ullah, S.; He, W. Horizontal Polarized DC Grounded Omnidirectional Antenna for UAV Ground Control Station. Sensors 2021, 21, 2763. [Google Scholar] [CrossRef]
- Li, J.; Ran, M.; Xie, L. Efficient trajectory planning for multiple nonholonomic mobile robots via prioritized trajectory optimization. IEEE Robot 2021, 6, 405–412. [Google Scholar]
- Suparnunt, C.; Boonvongsobhon, C.; Baig, F.E.; Leelalerthpat, P.; Hematulin, W.; Jarawan, T.; Kamsing, P. Practical Parallel of Autonomous Unmanned Aerial Vehicle by Mission Planner. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; p. 7831. [Google Scholar]
- Virbora, N.; Sokoeun, U.; Saran, M.; Sovicheyratana, S.; Channareth, S.; Saravuth, S. Implementation of Matrix Drone Show Using Automatic Path Generator with DJI Tello Drones. In Proceedings of the 2022 International Conference on Engineering and Emerging Technologies (ICEET), Kuala Lumpur, Malaysia, 27–28 October 2022; p. 1. [Google Scholar]
- Ouahouah, S.; Bagaa, M.; Prados-Garzon, J.; Taleb, T. Deep-Reinforcement-Learning-Based Collision Avoidance in UAV Environment. IEEE Internet Things J. 2022, 9, 4015–4030. [Google Scholar] [CrossRef]
- Xu, J.; Guo, Q.; Xiao, L.; Li, Z.; Zhang, G. Autonomous Decision-Making Method for Combat Mission of UAV based on Deep Reinforcement Learning. In Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 20–22 December 2019; p. 538. [Google Scholar]
- Zhao, J.; Luo, X. Three-dimensional Path Planning for Unmanned Aerial Vehicle (UAV) Based on Improved Mayfly Algorithm. In Proceedings of the 2022 IEEE International Conference on Unmanned Systems (ICUS), Guangzhou, China, 28–30 October 2022; p. 32. [Google Scholar]
- Çintaş, E.; Özyer, B.; Şimşek, E. Vision-Based Moving UAV Tracking by Another UAV on Low-Cost Hardware and a New Ground Control Station. IEEE Access 2020, 8, 194601. [Google Scholar] [CrossRef]
- Wei, W.; Tan, L.; Jin, G.; Lu, L.; Sun, C. A Survey of UAV Visual Navigation Based on Monocular SLAM. In Proceedings of the 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 14–16 December 2018; p. 1849. [Google Scholar]
- Ji, T.; Guo, Y.; Wang, Q.; Wang, X.; Li, P. ECONOMY: Point Clouds-Based Energy-Efficient Autonomous Navigation for UAVs. IEEE Trans. Netw. Sci. Eng. 2021, 8, 2885. [Google Scholar]
- Zhang, S.; Li, Y.; Ye, F.; Geng, X.; Zhou, Z.; Shi, T. A Hybrid Human-in-the-Loop Deep Reinforcement Learning Method for UAV Motion Planning for Long Trajectories with Unpredictable Obstacles. Drones 2023, 7, 311. [Google Scholar] [CrossRef]
- Yan, C.; Xiang, X.; Wang, C. Fixed-Wing UAVs flocking in continuous spaces: A deep reinforcement learning approach. Robot. Auton. Syst. 2020, 131, 103594. [Google Scholar] [CrossRef]
- Ma, N.; Cao, Y.; Wang, X.; Wang, Z.; Sun, H. A Fast path re-planning method for UAV based on improved A* algorithm. In Proceedings of the 2020 3rd International Conference on Unmanned Systems (ICUS), Harbin, China, 27–28 November 2020; pp. 462–467. [Google Scholar]
- Chen, J.; Du, C.; Zhang, Y.; Han, P.; Wei, W. A Clustering-Based Coverage Path Planning Method for Autonomous Heterogeneous UAVs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 25546–25556. [Google Scholar] [CrossRef]
- Zhang, H.; Gan, X.; Li, S.; Chen, Z. UAV safe route planning based on PSO-BAS algorithm. J. Syst. Eng. Electron. 2022, 33, 1151–1160. [Google Scholar] [CrossRef]
- Huang, H.; Qin, H.; Hao, Z.; Lim, A. Example-based Learning Particle Swarm Optimization for Continuous Optimization. Inf. Sci. 2012, 182, 125–138. [Google Scholar] [CrossRef]
- Petalas, Y.; Parsopoulos, K.; Vrahatis, M. Memetic particle swarm optimization. Ann. Oper. Res. 2007, 156, 99–127. [Google Scholar] [CrossRef]
- Góez, G.D.; Velásquez, R.A.; Botero, J.S. UAV route planning optimization using PSO implemented on microcontrollers. IEEE Lat. Am. Trans. 2016, 14, 1705–1710. [Google Scholar] [CrossRef]
- Li, Y.-L.; Shao, W.; You, L.; Wang, B.-Z. An Improved PSO Algorithm and Its Application to UWB Antenna Design. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1236–1239. [Google Scholar] [CrossRef]
- Yu, Z.; Si, Z.; Li, X.; Wang, D.; Song, H. A Novel Hybrid Particle Swarm Optimization Algorithm for Path Planning of UAVs. IEEE Internet Things J. 2022, 9, 22547–22558. [Google Scholar] [CrossRef]
- Pahlevi, R.; Murti, M.A.; Susanto, E. The implementation of PID using particle swarm optimization algorithm on Networked Control System. In Proceedings of the 2014 International Conference on Industrial Automation, Information and Communications Technology, Bali, Indonesia, 28–30 August 2014; pp. 35–38. [Google Scholar]
- Xue, L.; Wu, S.; Xu, Y.; Ma, D. A Simulation-Based Multi-Objective Optimization Design Method for Pump-Driven Electro-Hydrostatic Actuators. Processes 2019, 7, 274. [Google Scholar] [CrossRef] [Green Version]
- Borujeni, M.M.; Rashidi, A.; Saghaeian Nejad, S.M. Optimal four quadrant speed control of switched reluctance motor with torque ripple reduction based on EM-MOPSO. In Proceedings of the 6th Power Electronics, Drive Systems & Technologies Conference (PEDSTC2015), Tehran, Iran, 3–4 February 2015; pp. 310–315. [Google Scholar]
- Chen, S.; Hong, X.; Gao, J.; Harris, C.J. Complex-Valued B-Spline Neural Networks for Modeling and Inverting Hammerstein Systems. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1673–1685. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Wu, L.; You, T.; Ning, X. An Adaptive Clustering-Based Algorithm for Automatic Path Planning of Heterogeneous UAVs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16842–16853. [Google Scholar] [CrossRef]
- Chen, J.; Ling, F.; Zhang, Y.; You, T.; Liu, Y.; Du, X. Coverage path planning of heterogeneous unmanned aerial vehicles based on ant colony system. Swarm Evol. Comput. 2022, 69, 101005. [Google Scholar] [CrossRef]
- Boon, W.L.; Chai, P.Y.; Zakir, M.K.; Fawzi, F.B. A Distributed Method for UAV Swarm Path Planning. In Proceedings of the 2022 International Conference on Computer and Drone Applications (IConDA), Kuching, Malaysia, 28–29 November 2022; pp. 12–17. [Google Scholar]
Flight Range Parameters (m) | Obstacle Area Parameter OPR 1 (m) | Threat Area Parameter TPR 1 (m) | |
---|---|---|---|
Parameters | 2000 × 2000 × 1000 | (600, 500, 100) (500, 1500, 200) | (1000, 1000, 400) |
Terrain Parameter (m) | Algorithm | IBC 1 of 5 UAVs | FVC 1 of 5 UAVs | IBC 1 of 10 UAVs | FVC 1 of 10 UAVs |
---|---|---|---|---|---|
1 threat area, 2 obstacle areas | PSO | 82 | 3128.6 | 113 | 6034.5 |
E-CPSO | 56 | 1834.4 | 86 | 3179.6 | |
IPSO | 88 | 2465.2 | 121 | 4528.3 | |
GAPSO | 96 | 2104.3 | 134 | 4019.1 | |
CA | 72 | 3104.6 | 98 | 6194.4 | |
ACA | 105 | 2923.5 | 107 | 5478.5 | |
2 threat areas, 1 obstacle area | PSO | 78 | 3364.7 | 121 | 6823.1 |
E-CPSO | 52 | 2023.2 | 92 | 4435.3 | |
IPSO | 84 | 2675.4 | 125 | 5287.2 | |
GAPSO | 95 | 2392.9 | 138 | 4963.4 | |
CA | 74 | 2989.6 | 111 | 5892.3 | |
ACA | 96 | 3045.2 | 103 | 6102.2 | |
2 threat areas, 2 obstacle areas | PSO | 134 | 3578.6 | -- | -- |
E-CPSO | 112 | 2149.1 | 157 | 4752.8 | |
IPSO | 146 | 2538.3 | 172 | 6272.2 | |
GAPSO | 151 | 2414.7 | -- | -- | |
CA | 128 | 3192.2 | 169 | 6490.5 | |
ACA | 123 | 3234.7 | 174 | 6189.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, H.; Yu, B.; Yi, Q.; He, C. End-Cloud Collaboration Navigation Planning Method for Unmanned Aerial Vehicles Used in Small Areas. Sensors 2023, 23, 7129. https://doi.org/10.3390/s23167129
Xiong H, Yu B, Yi Q, He C. End-Cloud Collaboration Navigation Planning Method for Unmanned Aerial Vehicles Used in Small Areas. Sensors. 2023; 23(16):7129. https://doi.org/10.3390/s23167129
Chicago/Turabian StyleXiong, Huajie, Baoguo Yu, Qingwu Yi, and Chenglong He. 2023. "End-Cloud Collaboration Navigation Planning Method for Unmanned Aerial Vehicles Used in Small Areas" Sensors 23, no. 16: 7129. https://doi.org/10.3390/s23167129
APA StyleXiong, H., Yu, B., Yi, Q., & He, C. (2023). End-Cloud Collaboration Navigation Planning Method for Unmanned Aerial Vehicles Used in Small Areas. Sensors, 23(16), 7129. https://doi.org/10.3390/s23167129