Exhaust Emissions from Gasoline Vehicles with Different Fuel Detergency and the Prediction Model Using Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Vehicle, Routes, and Detergent
2.2. Instrumentation and Data Analysis
2.3. The Model of LSTM
2.4. Model Evaluation
3. Results and Discussion
3.1. Exhaust Emissions with Different Gasoline Detergency
3.1.1. Emission Factors on the Various Road Types
3.1.2. Coupling Effects of Vehicle Speed and Acceleration on Exhaust Emissions
3.1.3. Exhaust Emissions Distribution in Accordance with Vehicle VSP
3.2. Synergistic Emission Reduction Potential of Enhanced Detergency
3.2.1. The Pollutant Emission Indicator
3.2.2. The Distribution of Pollutant Emission Indicators Based on VSP
3.3. Emission Models of Gasoline Vehicles under Different Detergency Conditions
3.3.1. Modelling Feature Analysis
3.3.2. Data Preparation and Model Training
Algorithm 1. Feature organization. |
1: Initialize a train dataset |
2: For t = p to n |
3: Input data |
4: |
5: |
6: |
7: Insert (Q, ) into |
8: End |
Algorithm 2. Model training. |
1: Initialize model parameters randomly as , and total loss as Loss = 0; |
2: Repeat |
3: For each in |
4: Perform forward propagation to compute ; |
5: Compute mean square error ; |
6: ; |
7: Perform backward propagation to compute; |
8: update , ; |
9: End |
10: Until ; |
11: Output: Trained model DPVEM-DGD |
3.3.3. Model Validation and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashcroft, J.; Fraser, E.; Krishnamoorthy, S.; Westwood-Ruttledge, S. Carbon monoxide poisoning. BMJ 2019, 365, l2299. [Google Scholar] [CrossRef] [PubMed]
- Zhiwen, Y.; Chongzhi, Z.; Jingyuan, L.; Shu, S.; Jian, L.; Zhenkai, X.; Songbo, Q.; Xiaowen, Z.; Jiguang, W.; Mengliang, L.; et al. Research on the real-world gaseous emission characteristics of a plug-in hybrid electric vehicle under different initial battery state-of-charge. IOP Conf. Ser. Earth Environ. Sci. 2021, 821, 012014. [Google Scholar]
- Ehrenberger, S.I.; Konrad, M.; Philipps, F. Pollutant emissions analysis of three plug-in hybrid electric vehicles using different modes of operation and driving conditions. Atmos. Environ. 2020, 234, 117612. [Google Scholar] [CrossRef]
- Plötz, P.; Funke, S.Á.; Jochem, P. The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles. Transp. Res. Part A Policy Pract. 2018, 118, 331–340. [Google Scholar]
- Zhu, R.; Fu, Y.; Wang, L.; Hu, J.; He, L.; Wang, M.; Lai, Y.; Su, S. Effects of a start-stop system for gasoline direct injection vehicles on fuel consumption and particulate emissions in hot and cold environments. Environ. Pollut. 2022, 308, 119689. [Google Scholar] [CrossRef]
- Fonseca, N.; Casanova, J.; Valdés, M. Influence of the stop/start system on CO2 emissions of a diesel vehicle in urban traffic. Transp. Res. Part D Transp. Environ. 2011, 16, 194–200. [Google Scholar] [CrossRef]
- Helena, M.; Rita, A.; Margarida, G.; Muriel, I.; Nídia, S.C. Life cycle energy of vehicles on lightweighting and alternative powertrain strategies—A review. Energy Rep. 2022, 8, 241–247. [Google Scholar]
- Wang, Y.; Hao, C.; Ge, Y.; Hao, L.; Tan, J.; Wang, X.; Zhang, P.; Wang, Y.; Tian, W.; Lin, Z.; et al. Fuel consumption and emission performance from light-duty conventional/hybrid-electric vehicles over different cycles and real driving tests. Fuel 2020, 278, 118340. [Google Scholar]
- Zeng, W.; Miwa, T.; Morikawa, T. Prediction of vehicle CO2 emission and its application to eco-routing navigation. Transp. Res. Part C Emerg. Technol. 2016, 68, 194–214. [Google Scholar] [CrossRef]
- Nakamoto, Y.; Nishijima, D.; Kagawa, S. The role of vehicle lifetime extensions of countries on global CO2 emissions. J. Clean. Prod. 2018, 207, 1040–1046. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Verma, T. Comparative assessment of the emission characteristics of first, second and third generation biodiesels as fuel in a diesel engine. J. Therm. Eng. 2020, 6, 211–225. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Verma, T. Effect of fuel injection pressure of microalgae spirulina biodiesel blends on engine characteristics. J. Comput. Appl. Res. Mech. Eng. 2021, 10, 113–125. [Google Scholar]
- Rajak, U.; Panchal, M.; Veza, I.; Ağbulut, Ü.; Nath Verma, T.; Sarıdemir, S.; Shende, V. Experimental investigation of performance, combustion and emission characteristics of a variable compression ratio engine using low-density plastic pyrolyzed oil and diesel fuel blends. Fuel 2022, 319, 123720. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Verma, T.N. Performance analysis and exhaust emissions of aegle methyl ester operated compression ignition engine. Therm. Sci. Eng. Prog. 2019, 12, 100354. [Google Scholar] [CrossRef]
- Zand, A.D.; Nabi Bidhendi, G.; Mikaeili, T.A.; Pezeshk, H. The influence of deposit control additives on exhaust CO and HC emissions from gasoline engines (case study: Tehran). Transp. Res. Part D Transp. Environ. 2007, 12, 189–194. [Google Scholar] [CrossRef]
- Santos, A.P.F.; da Silva, K.K.; Dweck, J.; d’Avila, L.A. Quantification of detergent-dispersant additives in gasoline by thermogravimetry. Thermochim. Acta 2019, 681, 178400. [Google Scholar] [CrossRef]
- Magaril, E.; Magaril, R. Improving the environmental and performance characteristics of vehicles by introducing the surfactant additive into gasoline. Environ. Sci. Pollut. Res. 2016, 23, 17049–17057. [Google Scholar] [CrossRef]
- Jin, B.; Wang, M.; Zhu, R.; Jia, M.; Wang, Y.; Li, S.; Bao, X. Evaluation of additives used in gasoline vehicles in China: Fuel economy, regulated gaseous pollutants and volatile organic compounds based on both chassis dynamometer and on-road tests. Clean Technol. Environ. Policy 2021, 23, 1967–1979. [Google Scholar] [CrossRef]
- Zhu, R.; Bao, X.; Jia, M.; Yue, X.; Liu, Z.; Wang, B. Study on impact of gasoline detergent on vehicle emissions and its detergency. J. Environ. Eng. Technol. 2016, 6, 307–313. [Google Scholar]
- Chaurasiya, P.K.; Rajak, U.; Veza, I.; Verma, T.N.; Ağbulut, Ü. Influence of injection timing on performance, combustion and emission characteristics of a diesel engine running on hydrogen-diethyl ether, n-butanol and biodiesel blends. Int. J. Hydrog. Energy 2022, 47, 18182–18193. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H.; Yin, H.; Yang, Z.; Hao, L.; Tan, J.; Wang, X.; Zhang, M.; Li, J.; Lyu, L.; et al. Quantitative study of vehicle CO2 emission at various temperatures and road loads. Fuel 2022, 320, 123911. [Google Scholar] [CrossRef]
- Zhu, X.-H.; Lu, K.-F.; Peng, Z.-R.; Gao, H.O. Characterizing carbon emissions from China V and China VI gasoline vehicles based on portable emission measurement systems. J. Clean. Prod. 2022, 378, 134458. [Google Scholar] [CrossRef]
- Gallus, J.; Kirchner, U.; Vogt, R.; Benter, T. Impact of driving style and road grade on gaseous exhaust emissions of passenger vehicles measured by a Portable Emission Measurement System (PEMS). Transp. Res. Part D Transp. Environ. 2017, 52, 215–226. [Google Scholar] [CrossRef]
- Mei, H.; Wang, L.; Wang, M.; Zhu, R.; Wang, Y.; Li, Y.; Zhang, R.; Wang, B.; Bao, X. Characterization of exhaust CO, HC and NOx emissions from light-duty vehicles under real driving conditions. Atmosphere 2021, 12, 1125. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, R.; Peng, S.; Mao, H.; Yang, Z.; Andre, M.; Zhang, X. Development of vehicle emission model based on real-road test and driving conditions in Tianjin, China. Atmosphere 2022, 13, 595. [Google Scholar] [CrossRef]
- Wei, N.; Zhang, Q.; Zhang, Y.; Jin, J.; Chang, J.; Yang, Z.; Ma, C.; Jia, Z.; Ren, C.; Wu, L.; et al. Super-learner model realizes the transient prediction of CO2 and NOx of diesel trucks: Model development, evaluation and interpretation. Environ. Int. 2021, 158, 106977. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). EMEP/EEA Air Pollutant emission Inventory Guidebook. 2016. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016 (accessed on 28 August 2023).
- University of California at Riverside. IVE Model User’ s Manual Version 2. 2008. Available online: http://www.issrc.org/ive/downloads/manuals/UsersManual.pdf (accessed on 28 August 2023).
- Seo, J.; Yun, B.; Park, J.; Park, J.; Shin, M.; Park, S. Prediction of instantaneous real-world emissions from diesel light-duty vehicles based on an integrated artificial neural network and vehicle dynamics model. Sci. Total Environ. 2021, 786, 147359. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Zhang, P.; Chen, B. A microscopic model of vehicle CO2 emissions based on deep learning—A spatiotemporal analysis of taxicabs in Wuhan, China. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18446–18455. [Google Scholar] [CrossRef]
- GB 17930-2016; Gasoline for Motor Vehicles. Standardization Administration: Beijing, China, 2016. Available online: http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=C45A3554980A86E41F5AA4C6F3D48DC1 (accessed on 28 August 2023).
- Ershov, M.A.; Savelenko, V.D.; Makhova, U.A.; Kapustin, V.M.; Potanin, D.A.; Habibullin, I.F.; Lazarev, V.E.; Abdellatief, T.M.M.; Abdelkareem, M.A.; Olabi, A.G. New insights on introducing modern multifunctional additives into motor gasoline. Sci. Total Environ. 2022, 808, 152034. [Google Scholar] [CrossRef]
- Yazdani Boroujeni, B.; Frey, H.C. Road grade quantification based on global positioning system data obtained from real-world vehicle fuel use and emissions measurements. Atmos. Environ. 2014, 85, 179–186. [Google Scholar] [CrossRef]
- Jimenez-Palacios, J.L. Understanding and quantifying motor vehicle emissions with vehicle specific power and TILDAS remote sensing. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1998. [Google Scholar]
- Younglove, T.; Scora, G.; Barth, M. Designing on-road vehicle test programs for the development of effective vehicle emission models. Transp. Res. Rec. J. Transp. Res. Board 2005, 1941, 51–59. [Google Scholar] [CrossRef]
- Rongshuo, Z.; Yange, W.; Yujie, P.; Bowen, Z.; Yangbing, W.; Menglei, W.; Rencheng, Z. A deep learning micro-scale model to estimate the CO2 emissions from light-duty diesel trucks based on real-world driving. Atmosphere 2022, 13, 1466. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Zhiyu, S.; Xin, H. Analysis of gasoline detergent performance and fuel saving effects. Automob. Parts 2014, 16, 48–50. (In Chinese) [Google Scholar]
- Boggio-Marzet, A.; Monzón, A.; Luque-Rodríguez, P.; Álvarez-Mántaras, D. Comparative analysis of the environmental performance of delivery routes in the city center and peri-urban area of madrid. Atmosphere 2021, 12, 1233. [Google Scholar] [CrossRef]
- Henkel, S.; Hardalupas, Y.; Taylor, A.; Conifer, C.; Cracknell, R.; Goh, T.K.; Reinicke, P.-B.; Sens, M.; Rieß, M. Injector fouling and its impact on engine emissions and spray characteristics in gasoline direct injection engines. SAE Int. J. Fuels Lubr. 2017, 10, 287–295. [Google Scholar] [CrossRef]
- Ruilian, G.; Xiaofeng, B.; Xin, Y.; Wei, J. The experiment study on the influence of gasoline detergent on engine emission. Veh. Engine 2007, 3, 89–92. (In Chinese) [Google Scholar]
- Chong, H.S.; Kwon, S.; Lim, Y.; Lee, J. Real-world fuel consumption, gaseous pollutants, and CO2 emission of light-duty diesel vehicles. Sustain. Cities Soc. 2020, 53, 101925. [Google Scholar] [CrossRef]
- Guo, J.-X.; Zeng, Y.; Zhu, K.; Tan, X. Vehicle mix evaluation in Beijing’s passenger-car sector: From air pollution control perspective. Sci. Total Environ. 2021, 785, 147264. [Google Scholar] [CrossRef]
- Wei, Z.; Zhen, H.; Leung, C.; Cheung, C.; Huang, Z. Formations and emissions of CO/NO2/NOx in the laminar premixed biogas-hydrogen flame undergoing the flame-wall interaction: Effects of the variable CO2 proportion. Fuel 2020, 276, 118096. [Google Scholar] [CrossRef]
- Topgül, T. The effects of MTBE blends on engine performance and exhaust emissions in a spark ignition engine. Fuel Process. Technol. 2015, 138, 483–489. [Google Scholar] [CrossRef]
- Fei, X.; Lai, Z.; Fang, Y.; Ling, Q. A dual attention-based fusion network for long- and short-term multivariate vehicle exhaust emission prediction. Sci. Total Environ. 2023, 860, 160490. [Google Scholar] [CrossRef] [PubMed]
- Jaikumar, R.; Shiva Nagendra, S.M.; Sivanandan, R. Modeling of real time exhaust emissions of passenger cars under heterogeneous traffic conditions. Atmos. Pollut. Res. 2017, 8, 80–88. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Chen, H.; Xie, P.; Zu, L.; Wei, Y.; Wang, M.; Wang, Y.; Zhu, R. Exhaust Emissions from Gasoline Vehicles with Different Fuel Detergency and the Prediction Model Using Deep Learning. Sensors 2023, 23, 7655. https://doi.org/10.3390/s23177655
Zhang R, Chen H, Xie P, Zu L, Wei Y, Wang M, Wang Y, Zhu R. Exhaust Emissions from Gasoline Vehicles with Different Fuel Detergency and the Prediction Model Using Deep Learning. Sensors. 2023; 23(17):7655. https://doi.org/10.3390/s23177655
Chicago/Turabian StyleZhang, Rongshuo, Hongfei Chen, Peiyuan Xie, Lei Zu, Yangbing Wei, Menglei Wang, Yunjing Wang, and Rencheng Zhu. 2023. "Exhaust Emissions from Gasoline Vehicles with Different Fuel Detergency and the Prediction Model Using Deep Learning" Sensors 23, no. 17: 7655. https://doi.org/10.3390/s23177655
APA StyleZhang, R., Chen, H., Xie, P., Zu, L., Wei, Y., Wang, M., Wang, Y., & Zhu, R. (2023). Exhaust Emissions from Gasoline Vehicles with Different Fuel Detergency and the Prediction Model Using Deep Learning. Sensors, 23(17), 7655. https://doi.org/10.3390/s23177655