TIVC: An Efficient Local Search Algorithm for Minimum Vertex Cover in Large Graphs
Abstract
:1. Introduction
1.1. Background
1.2. Our Contributions
1.3. Organization of This Paper
2. Preliminaries
2.1. Notations and Terminologies
2.2. Local Search
3. Related Work
4. Main Algorithm
4.1. Top-Level Architecture
Algorithm 1: Top Level of TIVC |
Input: A graph , the cutoff time Output: A vertex cover of |
4.2. The TIVC Algorithm
Algorithm 2: TIVC |
Input: A graph , the cutoff time Output: A vertex cover of |
4.3. Complexity Analysis
5. Results and Discussion
5.1. Experiment Setup
5.2. Experimental Result
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WSN | Wireless sensor network |
WSNs | Wireless sensor networks |
VC | Vertex cover |
TI | 3-improvements |
MVC | Minimum vertex cover |
MIS | Maximum independent set |
BMS | Best from Multiple Selections heuristic |
WalkBMS | BMS with random walk strategy |
EABMS | Edge-age-based best from multiple selections |
References
- Dinur, I.; Safra, S. On the hardness of approximating minimum vertex cover. Ann. Math. 2005, 162, 439–485. [Google Scholar] [CrossRef]
- Bansal, N.; Khot, S. Inapproximability of hypergraph vertex cover and applications to scheduling problems. In International Colloquium on Automata, Languages, and Programming; Springer: Berlin/Heidelberg, Germany, 2010; pp. 250–261. [Google Scholar]
- Javad-Kalbasi, M.; Dabiri, K.; Valaee, S.; Sheikholeslami, A. Digitally annealed solution for the vertex cover problem with application in cyber security. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2642–2646. [Google Scholar]
- Kavalci, V.; Ural, A.; Dagdeviren, O. Distributed Vertex Cover Algorithms For Wireless Sensor Networks. Int. J. Comput. Netw. Commun. 2014, 6. [Google Scholar] [CrossRef]
- Clark, B.N.; Colbourn, C.J.; Johnson, D.S. Unit disk graphs. Discret. Math. 1990, 86, 165–177. [Google Scholar] [CrossRef]
- Kuhn, F.; Moscibroda, T.; Wattenhofer, R. Unit disk graph approximation. In Proceedings of the 2004 Joint Workshop on Foundations of Mobile Computing, Philadelphia, PA, USA, 1 October 2004; pp. 17–23. [Google Scholar]
- Akiba, T.; Iwata, Y. Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover. Theor. Comput. Sci. 2016, 609, 211–225. [Google Scholar] [CrossRef]
- Xiao, M.; Nagamochi, H. Exact algorithms for maximum independent set. Inf. Comput. 2017, 255, 126–146. [Google Scholar] [CrossRef]
- Li, Y.; Thai, M.T.; Wang, F.; Yi, C.W.; Wan, P.J.; Du, D.Z. On greedy construction of connected dominating sets in wireless networks. Wirel. Commun. Mob. Comput. 2005, 5, 927–932. [Google Scholar] [CrossRef]
- Bouamama, S.; Blum, C.; Boukerram, A. A population-based iterated greedy algorithm for the minimum weight vertex cover problem. Appl. Soft Comput. 2012, 12, 1632–1639. [Google Scholar] [CrossRef]
- Feo, T.A.; Resende, M.G.; Smith, S.H. A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 1994, 42, 860–878. [Google Scholar] [CrossRef]
- Viana, M.S.; Morandin Junior, O.; Contreras, R.C. A Modified Genetic Algorithm with Local Search Strategies and Multi-Crossover Operator for Job Shop Scheduling Problem. Sensors 2020, 20, 5440. [Google Scholar] [CrossRef]
- Zhu, E.; Jiang, F.; Liu, C.; Xu, J. Partition independent set and reduction-based approach for partition coloring problem. IEEE Trans. Cybern. 2020, 52, 4960–4969. [Google Scholar] [CrossRef]
- Liu, C.; Ge, S.; Zhang, Y. Identifying the cardinality-constrained critical nodes with a hybrid evolutionary algorithm. Inf. Sci. 2023, 642, 119140. [Google Scholar] [CrossRef]
- Dahlum, J.; Lamm, S.; Sanders, P.; Schulz, C.; Strash, D.; Werneck, R.F. Accelerating local search for the maximum independent set problem. In Proceedings of the Experimental Algorithms: 15th International Symposium, SEA 2016, St. Petersburg, Russia, 5–8 June 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 118–133. [Google Scholar]
- KhudaBukhsh, A.R.; Xu, L.; Hoos, H.H.; Leyton-Brown, K. SATenstein: Automatically building local search SAT solvers from components. Artif. Intell. 2016, 232, 20–42. [Google Scholar] [CrossRef]
- Song, T.; Liu, S.; Tang, X.; Peng, X.; Chen, M. An iterated local search algorithm for the University Course Timetabling Problem. Appl. Soft Comput. 2018, 68, 597–608. [Google Scholar] [CrossRef]
- He, P.; Hao, J.K. Iterated two-phase local search for the colored traveling salesmen problem. Eng. Appl. Artif. Intell. 2021, 97, 104018. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, W.; Fu, Z.H.; Zhou, M. Multi-neighborhood simulated annealing-based iterated local search for colored traveling salesman problems. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16072–16082. [Google Scholar] [CrossRef]
- Quan, C.; Guo, P. A local search method based on edge age strategy for minimum vertex cover problem in massive graphs. Expert Syst. Appl. 2021, 182, 115185. [Google Scholar] [CrossRef]
- Andrade, D.V.; Resende, M.G.; Werneck, R.F. Fast local search for the maximum independent set problem. J. Heuristics 2012, 18, 525–547. [Google Scholar] [CrossRef]
- Cai, S.; Su, K.; Sattar, A. Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artif. Intell. 2011, 175, 1672–1696. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, S.; Yin, M. Local search for minimum weight dominating set with two-level configuration checking and frequency based scoring function. J. Artif. Intell. Res. 2017, 58, 267–295. [Google Scholar] [CrossRef]
- Cai, S.; Su, K.; Luo, C.; Sattar, A. NuMVC: An efficient local search algorithm for minimum vertex cover. J. Artif. Intell. Res. 2013, 46, 687–716. [Google Scholar] [CrossRef]
- Richter, S.; Helmert, M.; Gretton, C. A stochastic local search approach to vertex cover. In Proceedings of the Annual Conference on Artificial Intelligence, Los Angeles, CA, USA, 9–13 July 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 412–426. [Google Scholar]
- Cai, S.; Su, K.; Chen, Q. EWLS: A new local search for minimum vertex cover. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, Atlanta, GE, USA, 11–15 July 2010; Volume 24, pp. 45–50.
- Cai, S. Balance between complexity and quality: Local search for minimum vertex cover in massive graphs. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015. [Google Scholar]
- Ma, Z.; Fan, Y.; Su, K.; Li, C.; Sattar, A. Local search with noisy strategy for minimum vertex cover in massive graphs. In Proceedings of the PRICAI 2016: Trends in Artificial Intelligence: 14th Pacific Rim International Conference on Artificial Intelligence, Phuket, Thailand, 22–26 August 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 283–294. [Google Scholar]
- Ma, Z.; Fan, Y.; Su, K.; Li, C.; Sattar, A. Random walk in large real-world graphs for finding smaller vertex cover. In Proceedings of the 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), San Jose, CA, USA, 6–8 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 686–690. [Google Scholar]
- Cai, S.; Lin, J.; Luo, C. Finding a small vertex cover in massive sparse graphs: Construct, local search, and preprocess. J. Artif. Intell. Res. 2017, 59, 463–494. [Google Scholar] [CrossRef]
- Luo, C.; Hoos, H.H.; Cai, S.; Lin, Q.; Zhang, H.; Zhang, D. Local Search with Efficient Automatic Configuration for Minimum Vertex Cover. In Proceedings of the IJCAI, Macao, China, 10–16 August 2019; pp. 1297–1304. [Google Scholar]
- Rossi, R.A.; Ahmed, N.K. The Network Data Repository with Interactive Graph Analytics and Visualization. In Proceedings of the AAAI, Austin, TX, USA, 20–30 January 2015. [Google Scholar]
Algorithms | FastVC | MetaVC | EAVC | TIVC |
---|---|---|---|---|
Construction | EdgeGreedyVC | EdgeGreedyVC | EdgeGreedyVC | EdgeGreedyVC |
Vertex Selection | BMS | BMS + Random | WalkBMS | BMS + Random |
Edge Selection | Random | Random | EABMS | EABMS + Random |
k-improvement | 2 | 2 | 2 | 3 |
Instance | FastVC | MetaVC | EAVC | TIVC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cit-HepTh | 18,155 | 18,155.0 | 0.05 | 18,155 | 18,155.0 | 0.40 | 18,155 | 18,155.0 | 0.12 | 18,155 | 18,155.4 | 0.12 |
as-22july06 | 3303 | 3303.0 | 0.01 | 3303 | 3303.0 | 0.04 | 3303 | 3303.0 | 2.41 | 3303 | 3303.6 | 0.01 |
cit-HepPh | 22,589 | 22,589.0 | 0.34 | 22,589 | 22,589.0 | 1.89 | 22,589 | 22,589.0 | 0.21 | 22,589 | 22,589.2 | 0.37 |
cond-mat-2005 | 23,106 | 23,106.0 | 0.09 | 23,106 | 23,106.0 | 0.33 | 23,106 | 23,106.0 | 0.05 | 23,106 | 23,106.4 | 0.07 |
soc-Epinions1 | 22,280 | 22,280.0 | 0.14 | 22,280 | 22,280.0 | 1.58 | 22,280 | 22,280.0 | 0.11 | 22,280 | 22,280.5 | 0.10 |
soc-Slashdot0811 | 24,046 | 24,046.0 | 0.31 | 24,046 | 24,046.0 | 2.19 | 24,046 | 24,046.0 | 0.15 | 24,046 | 24,046.4 | 0.14 |
soc-Slashdot0902 | 25,770 | 25,770.2 | 0.29 | 25,770 | 25,770.0 | 12.10 | 25,770 | 25,772.3 | 308.62 | 25,770 | 25,770.6 | 265.89 |
luxembourg_osm | 56,936 | 56,937.6 | 186.24 | 56,937 | 56,937.0 | 306.05 | 56,936 | 56,937.9 | 37.14 | 56,936 | 56,936.5 | 68.12 |
wave | 119,306 | 119,445.9 | 659.30 | 119,279 | 119,309.9 | 596.04 | 119,302 | 119,382.1 | 561.16 | 119,290 | 119,331.3 | 607.95 |
rec-dating | 89,839 | 89,853.3 | 302.80 | 89,780 | 89,787.9 | 809.35 | 89,806 | 89,811.4 | 752.09 | 89,792 | 89,799.7 | 798.95 |
caidaRouterLevel | 75,433 | 75,443.8 | 6.17 | 75,201 | 75,209.2 | 927.27 | 75,199 | 75,215.8 | 235.86 | 75,173 | 75,190.5 | 933.96 |
rec-libimseti-dir | 94,198 | 96,275.5 | 479.42 | 93,710 | 96,033.1 | 858.66 | 93,704 | 93,708.0 | 560.67 | 93,696 | 93,701.4 | 742.14 |
coAuthorsCiteseer | 129,193 | 129,193.0 | 1.32 | 129,193 | 129,193.0 | 26.94 | 129,193 | 129,193.0 | 0.58 | 129,193 | 129,193.6 | 0.60 |
amazon0302 | 168,554 | 168,557.9 | 574.72 | 168,553 | 168,561.1 | 590.24 | 168,547 | 168,552.5 | 467.84 | 168,545 | 168,550.6 | 556.79 |
email-EuAll | 18,317 | 18,317.0 | 0.06 | 18,316 | 18,316.0 | 31.62 | 18,316 | 18,316.1 | 0.07 | 18,316 | 18,317.2 | 0.07 |
Ga41As41H72 | 237,101 | 237,985.0 | 997.21 | 233,534 | 233,923.0 | 625.24 | 233,550 | 233,604.9 | 636.46 | 233,508 | 233,632.2 | 397.48 |
citationCiteseer | 118,180 | 118,184.6 | 12.27 | 118,118 | 118,120.2 | 863.87 | 118,135 | 118,147.6 | 84.15 | 118,135 | 118,146.0 | 440.38 |
web-Stanford | 118,879 | 118,895.1 | 637.11 | 118,591 | 118,605.3 | 836.93 | 118,613 | 118,625.2 | 444.53 | 118,603 | 118,616.2 | 878.72 |
coAuthorsDBLP | 155,618 | 155,618.0 | 5.94 | 155,618 | 155,618.0 | 164.00 | 155,618 | 155,618.0 | 1.66 | 155,618 | 155,619.0 | 1.13 |
ca-dblp-2012 | 164,949 | 164,949.0 | 3.74 | 164,949 | 164,949.1 | 387.89 | 164,949 | 164,949.0 | 1.29 | 164,949 | 164,949.7 | 0.76 |
cnr-2000 | 96,091 | 96,104.1 | 368.16 | 95,700 | 95,725.2 | 935.77 | 95,778 | 95,798.4 | 768.95 | 95,735 | 95,769.6 | 930.46 |
web-NotreDame | 74,094 | 74,104.3 | 128.56 | 73,914 | 73,920.1 | 862.43 | 73,943 | 73,948.3 | 394.22 | 73,927 | 73,931.7 | 895.30 |
amazon0312 | 261,594 | 261,598.7 | 840.60 | 261,622 | 261,632.5 | 604.34 | 261,596 | 261,602.4 | 422.35 | 261,591 | 261,598.5 | 834.25 |
amazon0601 | 266,579 | 266,586.3 | 461.46 | 266,607 | 266,615.6 | 578.30 | 266,567 | 266,572.5 | 346.39 | 266,565 | 266,572.2 | 662.40 |
amazon0505 | 267,256 | 267,260.3 | 682.73 | 267,280 | 267,288.4 | 615.81 | 267,252 | 267,257.4 | 505.85 | 267,248 | 267,254.7 | 715.89 |
coPapersCiteseer | 386,106 | 386,106.0 | 9.86 | 386,112 | 386,117.4 | 556.86 | 386,106 | 386,106.0 | 5.76 | 386,106 | 386,106.9 | 6.15 |
ca-coauthors-dblp | 472,179 | 472,179.0 | 20.44 | 472,194 | 472,199.1 | 508.31 | 472,179 | 472,179.0 | 5.01 | 472,179 | 472,179.9 | 4.42 |
coPapersDBLP | 472,179 | 472,179.0 | 35.57 | 472,194 | 472,197.2 | 333.46 | 472,179 | 472,179.0 | 8.36 | 472,179 | 472,179.9 | 8.03 |
web-BerkStan | 278,906 | 278,934.2 | 799.02 | 277,400 | 277,448.3 | 966.86 | 277,209 | 277,228.0 | 546.69 | 277,200 | 277,219.2 | 843.83 |
rec-epinion | 100,435 | 100,444.3 | 5.65 | 100,180 | 100,199.4 | 922.50 | 100,011 | 100,016.7 | 2.10 | 100,011 | 100,017.3 | 113.18 |
eu-2005 | 412,377 | 412,397.6 | 879.54 | 411,702 | 411,788.7 | 952.56 | 411,007 | 411,040.6 | 906.16 | 411,015 | 411,034.9 | 850.33 |
web-Google | 346,920 | 346,924.7 | 131.10 | 346,756 | 346,775.3 | 889.98 | 346,672 | 346,680.8 | 256.54 | 346,673 | 346,680.4 | 283.37 |
ldoor | 899,422 | 899,423.2 | 292.15 | 899,423 | 899,429.2 | 726.92 | 899,420 | 899,421.0 | 41.02 | 899,420 | 899,421.3 | 81.56 |
inf-roadNet-PA | 555,231 | 555,251.8 | 662.74 | 554,890 | 554,956.9 | 940.83 | 555,260 | 555,316.0 | 379.00 | 555,258 | 555,315.9 | 868.15 |
rt-retweet-crawl | 81,042 | 81,044.6 | 79.53 | 81,040 | 81,040.0 | 433.04 | 81,041 | 81,041.8 | 0.74 | 81,041 | 81,042.0 | 59.16 |
soc-youtube-snap | 276,945 | 276,945.0 | 12.70 | 276,946 | 276,947.3 | 434.07 | 276,945 | 276,945.7 | 5.08 | 276,945 | 276,946.2 | 6.62 |
soc-lastfm | 78,688 | 78,688.0 | 0.34 | 78,688 | 78,688.0 | 0.68 | 78,688 | 78,688.0 | 0.67 | 78,688 | 78,688.3 | 0.68 |
in-2004 | 487,189 | 487,237.8 | 902.55 | 486,920 | 486,953.8 | 936.79 | 486,490 | 486,519.0 | 926.08 | 486,509 | 486,519.0 | 867.07 |
tech-as-skitter | 527,163 | 527,201.2 | 410.91 | 526,529 | 526,635.7 | 964.58 | 525,494 | 525,515.5 | 520.16 | 525,492 | 525,515.5 | 497.47 |
soc-flickr-und | 474,637 | 474,637.5 | 233.62 | 474,646 | 474,652.8 | 579.93 | 474,637 | 474,637.9 | 94.72 | 474,637 | 474,638.5 | 69.20 |
inf-roadNet-CA | 1,001,317 | 1,001,341.0 | 901.75 | 1,001,123 | 1,001,246.6 | 872.86 | 1,001,473 | 1,001,525.0 | 437.53 | 1,001,471 | 1,001,513.0 | 749.76 |
web-baidu-baike | 637,106 | 637,110.2 | 506.66 | 637,092 | 637,111.9 | 783.86 | 637,014 | 637,019.8 | 330.01 | 637,013 | 637,021.0 | 384.52 |
packing*b050 | 1,624,945 | 1,625,325.0 | 996.99 | 1,615,573 | 1,616,094.7 | 976.60 | 1,624,191 | 1,625,500.0 | 997.79 | 1,623,445 | 1,625,416.0 | 997.74 |
tech-ip | 67,007 | 67,007.0 | 1.35 | 67,007 | 67,007.0 | 1.77 | 67,007 | 67,007.0 | 4.92 | 67,007 | 67,007.4 | 2.91 |
soc-flixster | 96,317 | 96,317.0 | 1.07 | 96,317 | 96,317.0 | 1.08 | 96,317 | 96,317.0 | 1.56 | 96,317 | 96,317.9 | 1.35 |
socfb-B-anon | 303,048 | 303,048.9 | 42.41 | 303,048 | 303,048.4 | 331.14 | 303,048 | 303,048.2 | 3.17 | 303,048 | 303,048.7 | 3.21 |
soc-orkut | 2,171,329 | 2,171,379.0 | 996.62 | 2,171,342 | 2,171,413.0 | 916.41 | 2,171,270 | 2,171,301.0 | 997.66 | 2,171,213 | 2,171,291.0 | 993.39 |
soc-orkut-dir | 2,233,961 | 2,234,015.0 | 996.91 | 2,233,979 | 2,234,033.8 | 976.94 | 2,233,775 | 2,233,820.0 | 997.14 | 2,233,858 | 2,233,929.0 | 996.25 |
socfb-A-anon | 375,231 | 375,232.8 | 27.41 | 375,230 | 375,231.8 | 340.28 | 375,230 | 375,230.9 | 100.17 | 375,230 | 375,230.9 | 75.81 |
patents | 1,673,977 | 1,674,016.0 | 982.94 | 1,673,793 | 1,673,839.9 | 913.50 | 1,673,562 | 1,673,615.0 | 969.76 | 1,673,600 | 1,673,632.0 | 976.26 |
soc-livejournal | 1,869,043 | 1,869,052.0 | 928.87 | 1,869,216 | 1,869,260.7 | 693.26 | 1,868,986 | 1,868,991.0 | 871.12 | 1,868,982 | 1,868,991.0 | 860.13 |
delaunay_n22 | 2,873,973 | 2,874,015.0 | 999.09 | 2,877,830 | 2,878,304.9 | 902.49 | 2,873,305 | 2,873,348.0 | 999.37 | 2,873,207 | 2,873,239.0 | 999.19 |
ljournal-2008 | 2,393,023 | 2,393,035.0 | 948.56 | 2,393,204 | 2,393,256.1 | 891.12 | 2,392,664 | 2,392,681.0 | 879.10 | 2,392,666 | 2,392,682.0 | 848.51 |
soc-ljournal-2008 | 2,392,992 | 2,393,038.0 | 950.13 | 2,393,179 | 2,393,265.3 | 861.51 | 2,392,660 | 2,392,677.0 | 780.64 | 2,392,665 | 2,392,679.0 | 873.16 |
rel9 | 273,993 | 273,993.4 | 274.61 | 274,155 | 274,160.0 | 337.87 | 273,993 | 273,993.5 | 152.69 | 273,993 | 273,993.6 | 214.00 |
sc-rel9 | 273,993 | 273,993.3 | 333.19 | 274,155 | 274,160.0 | 352.04 | 273,993 | 273,993.4 | 258.32 | 273,993 | 273,993.6 | 198.41 |
soc-livejo*groups | 1,841,367 | 1,841,386.0 | 907.27 | 1,841,441 | 1,841,501.7 | 885.40 | 1,841,061 | 1,841,077.0 | 503.85 | 1,841,061 | 1,841,078.0 | 643.42 |
delaunay_n23 | 5,753,835 | 5,754,557.0 | 999.97 | 5,791,630 | 5,793,429.5 | 999.93 | 5,799,719 | 5,801,179.0 | 999.99 | 5,762,821 | 5,763,597.0 | 999.99 |
friendster | 1,038,252 | 1,038,257.0 | 588.53 | 1,038,262 | 1,038,271.7 | 699.72 | 1,038,239 | 1,038,242.0 | 374.20 | 1,038,239 | 1,038,244.0 | 309.58 |
relat9 | 274,297 | 274,297.0 | 4.19 | 274,395 | 274,395.0 | 0.57 | 274,297 | 274,297.0 | 139.00 | 274,297 | 274,297.1 | 78.58 |
inf-germany_os | 5,710,522 | 5,710,676.0 | 999.93 | 5,743,216 | 5,748,327.0 | 999.96 | 5,777,786 | 5,786,140.0 | 999.99 | 5,714,456 | 5,715,014.0 | 999.98 |
hugetrace-00010 | 6,650,729 | 6,754,798.0 | 1000.00 | 6,782,555 | 6,809,180.5 | 999.99 | 6,914,568 | 6,924,276.0 | 1000.00 | 6,762,321 | 6,764,085.0 | 1000.00 |
road_central | 6,902,108 | 6,911,566.0 | 1000.00 | 6,898,380 | 6,926,199.7 | 999.96 | 6,944,280 | 6,945,766.0 | 999.99 | 6,890,545 | 6,895,530.0 | 999.99 |
hugetrace-00020 | 9,293,370 | 9,334,922.0 | 1000.00 | 9,232,864 | 9,421,598.0 | 1000.00 | 9,321,757 | 9,333,712.0 | 1000.00 | 9,239,511 | 9,240,936.0 | 1000.00 |
delaunay_n24 | 11,850,819 | 11,867,478.0 | 1000.00 | 11,954,634 | 11,958,292.5 | 1000.00 | 11,871,283 | 11,874,602.0 | 999.99 | 11,823,278 | 11,824,566.0 | 999.99 |
hugebubbles-00000 | 10,469,546 | 10,498,559.0 | 1000.00 | 10,412,746 | 10,551,611.5 | 1000.00 | 10,508,631 | 10,511,251.0 | 1000.00 | 10,417,508 | 10,432,354.0 | 1000.00 |
uk-2002 | 6,642,980 | 6,650,452.0 | 1000.00 | 6,662,784 | 6,695,299.3 | 1000.00 | 6,588,420 | 6,588,632.0 | 999.55 | 6,588,132 | 6,588,738.0 | 999.60 |
hugebubbles-00010 | 11,667,812 | 11,695,490.0 | 1000.00 | 11,666,025 | 11,718,530.0 | 1000.00 | 11,352,764 | 11,360,173.0 | 1000.00 | 11,319,443 | 11,328,490.0 | 1000.00 |
hugebubbles-00020 | 12,658,142 | 12,668,880.0 | 1000.00 | 12,593,050 | 12,695,334.2 | 1000.00 | 12,406,556 | 12,407,781.0 | 1000.00 | 12,358,096 | 12,359,528.0 | 1000.00 |
inf-road-usa | 12,022,434 | 12,027,594.0 | 1000.00 | 12,024,687 | 12,049,621.1 | 1000.00 | 11,989,552 | 11,991,769.0 | 999.99 | 11,950,231 | 11,952,066.0 | 999.99 |
inf-europe_os | 25,910,226 | 25,912,219.0 | 1000.00 | 25,911,227 | 25,920,918.3 | 999.90 | 25,918,018 | 25,924,685.0 | 1000.00 | 25,896,775 | 25,898,696.0 | 999.99 |
socfb-uci-uni | 866,768 | 866,768.0 | 43.18 | 866,767 | 866,767.8 | 160.31 | 866,766 | 866,766.0 | 26.20 | 866,766 | 866,767.4 | 24.50 |
Instance_Scale | Num | FastVC | MetaV | EAVC | TIVC |
---|---|---|---|---|---|
7 | 7/0 | 7/0 | 7/0 | 7/0 | |
26 | 7/0 | 10/6 | 12/2 | 18/8 | |
27 | 10/1 | 9/4 | 17/5 | 17/5 | |
12 | 2/2 | 2/2 | 1/0 | 8/7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, S.; Liu, C.; Zhu, E. TIVC: An Efficient Local Search Algorithm for Minimum Vertex Cover in Large Graphs. Sensors 2023, 23, 7831. https://doi.org/10.3390/s23187831
Zhang Y, Wang S, Liu C, Zhu E. TIVC: An Efficient Local Search Algorithm for Minimum Vertex Cover in Large Graphs. Sensors. 2023; 23(18):7831. https://doi.org/10.3390/s23187831
Chicago/Turabian StyleZhang, Yu, Shengzhi Wang, Chanjuan Liu, and Enqiang Zhu. 2023. "TIVC: An Efficient Local Search Algorithm for Minimum Vertex Cover in Large Graphs" Sensors 23, no. 18: 7831. https://doi.org/10.3390/s23187831
APA StyleZhang, Y., Wang, S., Liu, C., & Zhu, E. (2023). TIVC: An Efficient Local Search Algorithm for Minimum Vertex Cover in Large Graphs. Sensors, 23(18), 7831. https://doi.org/10.3390/s23187831