Sensitive and Compact Evanescent-Waveguide Optical Detector for Sugar Sensing in Commercial Beverages
Abstract
:1. Introduction
2. Operating Principle and Features
2.1. Optical Waveguide
2.2. Optical Detector
3. Prototyping
4. Sensing Demonstration of Sugar Content in Commercial Beverages
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bentham, J.; Di Cesare, M.; Bilano, V.; Bixby, H.; Zhou, B.; Stevens, G.A.; Riley, L.M.; Taddei, C.; Hajifathalian, K.; Lu, Y.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128 9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- GBD 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.P.; Hu, F.B. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef]
- Malik, V.S.; Schulze, M.B.; Hu, F.B. Intake of sugar-sweetened beverages and weight gain: A systematic review. Am. J. Clin. Nutr. 2006, 84, 274–288. [Google Scholar] [CrossRef]
- Scarborough, P.; Adhikari, V.; Harrington, R.A.; Elhussein, A.; Briggs, A.; Rayner, M.; Adams, J.; Cummins, S.; Penney, T.; White, M. Impact of the announcement and implementation of the UK soft drinks industry levy on sugar content, price, product size and number of available soft drinks in the UK, 2015–2019: A controlled interrupted time series analysis. PLoS Med. 2020, 17, e1003025. [Google Scholar] [CrossRef]
- Silver, L.D.; Ng, S.W.; Ryan-Ibarra, S.; Taillie, L.S.; Induni, M.; Miles, D.R.; Poti, J.M.; Popkin, B.M. Changes in prices, sales, consumer spending, and beverage consumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: A before-and-after study. PLoS Med. 2017, 14, e1002283. [Google Scholar] [CrossRef]
- Muller, L.; Ruffieux, B. What makes a front-of-pack nutritional labelling system effective: The impact of key design components on food purchases. Nutrients 2020, 12, 2870. [Google Scholar] [CrossRef]
- Ducrot, P.; Julia, C.; Méjean, C.; Kesse-Guyot, E.; Touvier, M.; Fezeu, L.K.; Hercberg, S.; Péneau, S. Impact of different front-of-pack nutrition labels on consumer purchasing intentions: A randomized controlled trial. Am. J. Prev. Med. 2016, 50, 627–636. [Google Scholar] [CrossRef]
- Kaushik, A.; Mujawar, M.A. Point of care sensing devices: Better care for everyone. Sensors 2018, 18, 4303. [Google Scholar] [CrossRef]
- Daikuzono, C.M.; Delaney, C.; Morrin, A.; Diamond, D.; Florea, L.; Oliveira, O.N. Paper based electronic tongue-a low-cost solution for the distinction of sugar type and apple juice brand. Analyst 2019, 144, 2827–2832. [Google Scholar] [CrossRef] [PubMed]
- Salman, F.; Kazici, H.C.; Kivrak, H. Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages. Front. Chem. Sci. Eng. 2020, 14, 629–638. [Google Scholar] [CrossRef]
- Belay, A.; Assefa, G. Concentration, Wavelength and Temperature Dependent Refractive Index of Sugar Solutions and Methods of Determination Contents of Sugar in Soft Drink Beverages using Laser Lights. J. Lasers Opt. Photonics 2018, 5, 187. [Google Scholar] [CrossRef]
- Svanberg, S.; Zhao, G.; Zhang, H.; Huang, J.; Lian, M.; Li, T.; Zhu, S.; Li, Y.; Duan, Z.; Lin, H.; et al. Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research. Opt. Express 2016, 24, A515. [Google Scholar] [CrossRef] [PubMed]
- Azargoshasb, T.; Navid, H.A.; Parvizi, R.; Heidari, H. Evanescent Wave Optical Trapping and Sensing on Polymer Optical Fibers for Ultra-Trace Detection of Glucose. ACS Omega 2020, 5, 22046–22056. [Google Scholar] [CrossRef]
- Buzzin, A.; Asquini, R.; Caputo, D.; de Cesare, G. On-glass integrated su-8 waveguide and amorphous silicon photosensor for on-chip detection of biomolecules: Feasibility study on hemoglobin sensing. Sensors 2021, 21, 415. [Google Scholar] [CrossRef]
- Buzzin, A.; Asquini, R.; Caputo, D.; de Cesare, G. Evanescent waveguide lab-on-chip for optical biosensing in food quality control. Photonics Res. 2022, 10, 1453. [Google Scholar] [CrossRef]
- Shehadeh, A.; Evangelou, A.; Kechagia, D.; Tataridis, P.; Chatzilazarou, A.; Shehadeh, F. Effect of ethanol, glycerol, glucose/fructose and tartaric acid on the refractive index of model aqueous solutions and wine samples. Food Chem. 2020, 329, 127085. [Google Scholar] [CrossRef]
- Yeh, Y.L. Real-time measurement of glucose concentration and average refractive index using a laser interferometer. Opt. Lasers Eng. 2008, 46, 666–670. [Google Scholar] [CrossRef]
- Buzzin, A.; Asquini, R.; Caputo, D.; De Cesare, G. Optical Detection of Analytes through Evanescent Waves in Lab-on-Chip Devices. In Proceedings of the 2021 44th International Convention on Information, Communication and Electronic Technology, MIPRO, Opatija, Croatia, 27 September–1 October 2021; pp. 1793–1798. [Google Scholar]
- Liu, G.; Tian, Y.; Kan, Y. Fabrication of high-aspect-ratio microstructures using SU8 photoresist. Microsyst. Technol. 2005, 11, 343–346. [Google Scholar] [CrossRef]
- Girault, P.; Lorrain, N.; Poffo, L.; Guendouz, M.; Lemaitre, J.; Carré, C.; Gadonna, M.; Bosc, D.; Vignaud, G. Integrated polymer micro-ring resonators for optical sensing applications. J. Appl. Phys. 2015, 117, 014901. [Google Scholar] [CrossRef]
- Lorenz, H.; Despont, M.; Fahrni, N.; LaBianca, N.; Renaud, P.; Vettiger, P. SU-8: A low-cost negative resist for MEMS. J. Micromech. Microeng. 1997, 7, 121–124. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, M.; Wei, G.; Hu, R.; Luo, Z.; Li, G. Improved PLS regression based on SVM classification for rapid analysis of coal properties by near-infrared reflectance spectroscopy. Sens. Actuators, B Chem. 2014, 193, 723–729. [Google Scholar] [CrossRef]
- Alam, B.; Ferraro, A.; Caputo, R.; Asquini, R. Optical properties and far field radiation of periodic nanostructures fed by an optical waveguide for applications in fluorescence and Raman scattering. Opt. Quantum Electron. 2022, 54, 307. [Google Scholar] [CrossRef]
- Bertsch, A.; Renaud, P. Special issue: 15 years of SU8 as MEMS material. Micromachines 2015, 6, 790–792. [Google Scholar] [CrossRef]
- Vasylieva, N.; Marinesco, S.; Barbier, D.; Sabac, A. Silicon/SU8 multi-electrode micro-needle for in vivo neurochemical monitoring. Biosens. Bioelectron. 2015, 72, 148–155. [Google Scholar] [CrossRef]
- De Cesare, G.; Nascetti, A.; Caputo, D. Amorphous silicon p-i-n structure acting as light and temperature sensor. Sensors 2015, 15, 12260. [Google Scholar] [CrossRef]
- Almasri, M.; Xu, B.; Castracane, J. Amorphous silicon two-color microbolometer for uncooled IR detection. IEEE Sens. J. 2006, 6, 293–300. [Google Scholar] [CrossRef]
- Sreejith, S.; Ajayan, J.; Kollem, S.; Sivasankari, B. A Comprehensive Review on Thin Film Amorphous Silicon Solar Cells. Silicon 2022, 14, 8277–8293. [Google Scholar] [CrossRef]
- Della Corte, F.G.; Rao, S. Use of amorphous silicon for active photonic devices. IEEE Trans. Electron Devices 2013, 60, 1495–1505. [Google Scholar] [CrossRef]
- De Vita, C.; Klitis, C.; Codreanu, N.; Ferrari, G.; Sorel, M.; Melloni, A.; Morichetti, F. Compact amorphous-silicon visible-light monitor integrated in silicon nitride waveguides. In Proceedings of the IEEE International Conference on Group IV Photonics GFP, Malaga, Spain, 7–10 December 2021; Volume 2021-Decem. [Google Scholar]
- Street, R.A.; Winer, K. Material Properties of Hydrogenated Amorphous Silicon. In Handbook of Semiconductor Technology: Electronic Structure and Properties of Semiconductors; Wiley: Hoboken, NJ, USA, 2000; pp. 541–595. [Google Scholar] [CrossRef]
- Zangheri, M.; Di Nardo, F.; Mirasoli, M.; Anfossi, L.; Nascetti, A.; Caputo, D.; De Cesare, G.; Guardigli, M.; Baggiani, C.; Roda, A. Chemiluminescence lateral flow immunoassay cartridge with integrated amorphous silicon photosensors array for human serum albumin detection in urine samples. Anal. Bioanal. Chem. 2016, 408, 8869–8879. [Google Scholar] [CrossRef] [PubMed]
- Nathan, M.; Levy, O.; Goldfarb, I.; Ruzin, A. Monolithic coupling of a SU8 waveguide to a silicon photodiode. J. Appl. Phys. 2003, 94, 7932–7934. [Google Scholar] [CrossRef]
- Maniyara, R.A.; Graham, C.; Paulillo, B.; Bi, Y.; Chen, Y.; Herranz, G.; Baker, D.E.; Mazumder, P.; Konstantatos, G.; Pruneri, V. Highly transparent and conductive ITO substrates for near infrared applications. APL Mater. 2021, 9, 021121. [Google Scholar] [CrossRef]
- Kalaga, P.S.; Kumar, D.; Ang, D.S.; Tsakadze, Z. Highly Transparent ITO/HfO2/ITO Device for Visible-Light Sensing. IEEE Access 2020, 8, 91648–91652. [Google Scholar] [CrossRef]
- König, T.A.F.; Ledin, P.A.; Kerszulis, J.; Mahmoud, M.A.; El-Sayed, M.A.; Reynolds, J.R.; Tsukruk, V.V. Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 2014, 8, 6182–6192. [Google Scholar] [CrossRef] [PubMed]
- Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20, S35. [Google Scholar] [CrossRef]
- Asquini, R.; Buzzin, A.; Caputo, D.; De Cesare, G. Integrated Evanescent Waveguide Detector for Optical Sensing. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1180–1186. [Google Scholar] [CrossRef]
- Yusmawati, W.Y.W.; Chuah, H.P.; Mahmood, M.Y.W. Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance. Am. J. Appl. Sci. 2007, 4, 1–4. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer US: New York, NY, USA, 2007; ISBN 978-0-387-33150-8. [Google Scholar]
- Xhoxhi, M.; Dudia, A.; Ymeti, A. Interferometric Evanescent Wave Biosensor Principles and Parameters. IOSR J. Appl. Phys. 2015, 7, 84–96. [Google Scholar]
- Wang, W.; Deng, G.; Hu, Z.; Chen, K.; Wu, J. Sensitive Evanescence-Field Waveguide Interferometer for Aqueous Nitro-Explosive Sensing. Chemosensors 2023, 11, 246. [Google Scholar] [CrossRef]
- Alam, B.; Buzzin, A.; Grossi, F.; Caputo, D.; Cesare, G.D.; Asquini, R. Optical Interferometer with On-Chip Amorphous Silicon Photodiode for Biosensing Applications. In Proceedings of the 2022 IEEE Photonics Conference, IPC 2022—Proceedings, Vancouver, BC, Canada, 13–17 November 2022. [Google Scholar]
N | k | |||||
---|---|---|---|---|---|---|
Sugar [%] | F&N Orange | 100 Plus | Coke | F&N Orange | 100 Plus | Coke |
0 | 1.329 | 1.329 | 1.329 | 1.50 × 10−4 | 1.99 × 10−4 | 1.59 × 10−4 |
1 | 1.330 | 1.330 | 1.331 | 3.57 × 10−4 | 5.40 × 10−4 | 6.80 × 10−4 |
2 | 1.332 | 1.332 | 1.333 | 5.64 × 10−4 | 8.80 × 10−4 | 1.20 × 10−3 |
3 | 1.333 | 1.334 | 1.335 | 7.70 × 10−4 | 1.22 × 10−3 | 1.72 × 10−3 |
4 | 1.335 | 1.335 | 1.336 | 9.76 × 10−4 | 1.56 × 10−3 | 2.24 × 10−3 |
5 | 1.336 | 1.337 | 1.338 | 1.18 × 10−3 | 1.90 × 10−3 | 2.75 × 10−3 |
6 | 1.338 | 1.339 | 1.340 | 1.39 × 10−3 | 2.23 × 10−3 | 3.27 × 10−3 |
7 | 1.339 | 1.340 | 1.342 | 1.59 × 10−3 | 2.57 × 10−3 | 3.78 × 10−3 |
8 | 1.341 | 1.344 | 1.79 × 10−3 | 4.29 × 10−3 | ||
9 | 1.342 | 1.346 | 2.00 × 10−3 | 4.80 × 10−3 | ||
10 | 1.344 | 1.348 | 2.20 × 10−3 | 5.31 × 10−3 | ||
11 | 1.346 | 2.40 × 10−3 | ||||
12 | 1.347 | 2.60 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzzin, A.; Asquini, R.; Caputo, D.; de Cesare, G. Sensitive and Compact Evanescent-Waveguide Optical Detector for Sugar Sensing in Commercial Beverages. Sensors 2023, 23, 8184. https://doi.org/10.3390/s23198184
Buzzin A, Asquini R, Caputo D, de Cesare G. Sensitive and Compact Evanescent-Waveguide Optical Detector for Sugar Sensing in Commercial Beverages. Sensors. 2023; 23(19):8184. https://doi.org/10.3390/s23198184
Chicago/Turabian StyleBuzzin, Alessio, Rita Asquini, Domenico Caputo, and Giampiero de Cesare. 2023. "Sensitive and Compact Evanescent-Waveguide Optical Detector for Sugar Sensing in Commercial Beverages" Sensors 23, no. 19: 8184. https://doi.org/10.3390/s23198184
APA StyleBuzzin, A., Asquini, R., Caputo, D., & de Cesare, G. (2023). Sensitive and Compact Evanescent-Waveguide Optical Detector for Sugar Sensing in Commercial Beverages. Sensors, 23(19), 8184. https://doi.org/10.3390/s23198184