Measurement Reduction Methods for Processing Tomographic Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Linear Model of Sinogram Registration
2.2. Backprojection Method
2.3. Elements of the Theory of Computer-Aided Measuring Systems
2.4. Estimate Improvement Using Pixel Non-Negativity
- The linear reduction estimate and an estimate are combined by considering as a measurement (composed of the real measurement and a dummy measurement) made by a MT and affected by noise with covariance operator , where .
- The previous result is projected onto .
2.4.1. Local Approach
Algorithm 1: Local algorithm for measurement reduction of a sinogram |
2.4.2. Iterative Approach
Algorithm 2: Iterative algorithm for measurement reduction of a sinogram, basic version |
Algorithm 3: Iterative algorithm for measurement reduction of a sinogram, improved version |
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ART | Algebraic reconstruction technique |
CT | Computer tomography |
FBP | filtered backprojection |
MR-GD | measurement reduction using gradient descent |
MR-K | measurement reduction using Kaczmarz’s method |
RAS | Russian Academy of Sciences |
SART | Simultaneous algebraic reconstruction |
UFBP | unfiltered backprojection |
w. r. t. | with respect to |
References
- Goncharsky, A.V.; Romanov, S.Y. A method of solving the coefficient inverse problems of wave tomography. Comput. Math. Appl. 2019, 77, 967–980. [Google Scholar] [CrossRef]
- Leonov, A.S.; Wang, Y.; Yagola, A.G. Piecewise uniform regularization for the inverse problem of microtomography with a posteriori error estimate. Inverse Probl. Sci. Eng. 2018, 28, 448–458. [Google Scholar] [CrossRef]
- Ingacheva, A.; Chukalina, M.; Buzmakov, A.; Nikolaev, D. Method for numeric estimation of Cupping effect on CT images. In Proceedings of the Twelfth International Conference on Machine Vision (ICMV 2019), Amsterdam, The Netherlands, 16–18 November 2019; Osten, W., Nikolaev, D.P., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume 11433, p. 1143331. [Google Scholar] [CrossRef]
- Nikolaev, D.; Buzmakov, A.; Chukalina, M.; Yakimchuk, I.; Gladkov, A.; Ingacheva, A. CT image quality assessment based on morphometric analysis of artifacts. In Proceedings of the 2016 International Conference on Robotics and Machine Vision (ICRMV 2016), Moscow, Russia, 14–16 September 2016; Bernstein, A.V., Olaru, A., Zhou, J., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 10253, p. 102530B. [Google Scholar] [CrossRef]
- Buzmakov, A.V.; Asadchikov, V.E.; Zolotov, D.A.; Roshchin, B.S.; Dymshits, Y.M.; Shishkov, V.A.; Chukalina, M.V.; Ingacheva, A.S.; Ichalova, D.E.; Krivonosov, Y.S.; et al. Laboratory microtomographs: Design and data processing algorithms. Crystallogr. Rep. 2018, 63, 1057–1061. [Google Scholar] [CrossRef]
- Barbu, T. Detail-preserving fourth-order nonlinear PDE-based image restoration framework. J. Image Graph. 2020, 8, 5–8. [Google Scholar] [CrossRef]
- Frenkel, D.; De Beenhouwer, J.; Sijbers, J. An adaptive probability map for the Discrete Algebraic Reconstruction Technique. In Proceedings of the 10th Conference on Industrial Computed Tomography, Wels, Austria, 4–7 February 2020. [Google Scholar]
- Chulichkov, A.I.; Molkov, E.M.; Prutjan, S.I. Improving the quality of tomographic images by the methods of the computer-aided measuring systems. Proc. SPIE 2021, 11605, 1160513. [Google Scholar] [CrossRef]
- Baguer, D.O.; Leuschner, J.; Schmidt, M. Computed tomography reconstruction using deep image prior and learned reconstruction methods. Inverse Probl. 2020, 36, 094004. [Google Scholar] [CrossRef]
- Natterer, F. The Mathematics of Computerized Tomography; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1986. [Google Scholar] [CrossRef]
- Natterer, F.; Ritman, E.L. Past and future directions in X-ray computed tomography (CT). Int. J. Imaging Syst. Technol. 2002, 12, 175–187. [Google Scholar] [CrossRef]
- Herman, G.T. Fundamentals of Computerized Tomography: Image Reconstruction from Projection; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; IEEE Press: Piscataway, NJ, USA, 1988. [Google Scholar] [CrossRef]
- Andersen, A.H.; Kak, A.C. Simultaneous Algebraic Reconstruction Technique (SART): A superior implementation of the ART algorithm. Ultrason. Imaging 1984, 6, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Pyt’ev, Y.P. Methods of Mathematical Modeling of Computer-Aided Measuring Systems, 3rd ed.; Fizmatlit: Moscow, Russia, 2012. (In Russian) [Google Scholar]
- Pyt’ev, Y.P. Measurement-computation converter as a measurement facility. Autom. Remote Control 2010, 71, 303–319. [Google Scholar] [CrossRef]
- Balakin, D.A.; Pyt’ev, Y.P. A comparative analysis of reduction quality for probabilistic and possibilistic measurement models. Moscow Univ. Phys. Bull. 2017, 72, 101–112. [Google Scholar] [CrossRef]
- Balakin, D.A.; Pyt’ev, Y.P. Improvement of Measurement Reduction If the Feature of Interest of the Research Object Belongs to a Known Convex Closed Set; Memoirs of the Faculty of Physics, M. V. Lomonosov Moscow State University: Moscow, Russia, 2018; p. 1850301. (In Russian) [Google Scholar]
- Kim, H.; Wijesinghe, R.E.; Jeon, M.; Kim, J. Measurement for Rice Leaves Morphological Formation and Structural Information Using a Non-invasive Tomography. J. Image Graph. 2020, 8, 1–4. [Google Scholar] [CrossRef]
- Tan, M.H.; Ong, S.H.; Thakku, S.G.; Cheng, C.Y.; Aung, T.; Girard, M. Automatic Feature Extraction of Optical Coherence Tomography for Lamina Cribrosa Detection. J. Image Graph. 2015, 3, 102–106. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Mariano, V.Y. Image quality improvement in kidney stone detection on computed tomography images. J. Image Graph. 2015, 3, 40–46. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Goncharsky, A.V.; Stepanov, V.V.; Yagola, A.G. Numerical Methods for the Solution of Ill-Posed Problems; Springer Science+Business Media: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Sizikov, V.S.; Sergienko, A.A.; Kondulukova, D.A. Spectral method for stable estimating the distortion parameters in inverse problem of image restoration. J. Instrum. Eng. 2019, 62, 379–386. [Google Scholar] [CrossRef]
- Fursov, V.A.; Goshin, Y.V.; Medvedeva, K.S. Technology of enhancing image detalization with nonlinear correction of highly gradient fragments. Comput. Opt. 2019, 43, 484–491. [Google Scholar] [CrossRef]
- Gao, H.; Zeng, W.; Chen, J. An improved gray-scale transformation method for pseudo-color image enhancement. Comput. Opt. 2019, 43, 78–82. [Google Scholar] [CrossRef]
- Donatelli, M.; Huckle, T.; Mazza, M.; Sesana, D. Image deblurring by sparsity constraint on the Fourier coefficients. Numer. Algorithms 2015, 72, 341–361. [Google Scholar] [CrossRef]
- Chulichkov, A.; Molkov, E. Increasing the resolution of a non-negative brightness image distorted by a linear transformation. In Proceedings of the 2020 International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russia, 26–29 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Topal, E.; Löffler, M.; Zschech, E. Deep learning-based inaccuracy compensation in reconstruction of high resolution XCT data. Sci. Rep. 2020, 10, 7682. [Google Scholar] [CrossRef] [PubMed]
- Chong, E.K.P.; Zak, S.H. An Introduction to Optimization, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Balakin, D. Improvement of measurement reduction of tomographic images using non-negativity of brightness. In Proceedings of the Fourteenth International Conference on Machine Vision (ICMV 2021), Rome, Italy, 8–12 November 2021; Osten, W., Nikolaev, D., Zhou, J., Eds.; SPIE: Bellingham, WA, USA, 2022; Volume 12084, p. 12084K. [Google Scholar] [CrossRef]
- Kohler, T. A projection access scheme for iterative reconstruction based on the golden section. In Proceedings of the IEEE Symposium Conference Record Nuclear Science 2004, Rome, Italy, 16–22 October 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 6, pp. 3961–3965. [Google Scholar] [CrossRef]
- Eicke, B. Iteration methods for convexly constrained ill-posed problems in Hilbert space. Numer. Funct. Anal. Optim. 1992, 13, 413–429. [Google Scholar] [CrossRef]
- Pyt’ev, Y.P.; Chulichkov, A.I. Methods of Morphological Image Analysis; Fizmatlit: Moscow, Russia, 2010. (In Russian) [Google Scholar]
- Chukalina, M.; Nikolaev, D.; Ingacheva, A.; Buzmakov, A.; Yakimchuk, I.; Asadchikov, V. To image analysis in computed tomography. In Proceedings of the Ninth International Conference on Machine Vision (ICMV 2016), Nice, France, 18–20 November 2016; Verikas, A., Radeva, P., Nikolaev, D.P., Zhang, W., Zhou, J., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 10341, p. 103411B. [Google Scholar] [CrossRef]
- Buzmakov, A.; Ingacheva, A.; Prun, V.; Nikolaev, D.; Chukalina, M.; Ferrero, C.; Asadchikov, V. Analysis of computer images in the presence of metals. In Proceedings of the Tenth International Conference on Machine Vision (ICMV 2017), Vienna, Austria, 13–15 November 2017; Zhou, J., Radeva, P., Nikolaev, D., Verikas, A., Eds.; SPIE: Bellingham, WA, USA, 2018; Volume 10696, p. 106961B. [Google Scholar] [CrossRef]
Method | Arithmetic Operations | Consumed Memory |
---|---|---|
Algorithm 1 (local) | + UFBP | + UFBP |
Algorithm 2 (iterative, using Kaczmarz’s method) | ||
Algorithm 3 (iterative, using Kaczmarz’s method; MR-K) | ||
Algorithm 2 with Landweber method (MR-GD) | ||
SART (for comparison) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chulichkov, A.I.; Balakin, D.A. Measurement Reduction Methods for Processing Tomographic Images. Sensors 2023, 23, 563. https://doi.org/10.3390/s23020563
Chulichkov AI, Balakin DA. Measurement Reduction Methods for Processing Tomographic Images. Sensors. 2023; 23(2):563. https://doi.org/10.3390/s23020563
Chicago/Turabian StyleChulichkov, Alexey I., and Dmitriy A. Balakin. 2023. "Measurement Reduction Methods for Processing Tomographic Images" Sensors 23, no. 2: 563. https://doi.org/10.3390/s23020563
APA StyleChulichkov, A. I., & Balakin, D. A. (2023). Measurement Reduction Methods for Processing Tomographic Images. Sensors, 23(2), 563. https://doi.org/10.3390/s23020563