State of the Art on Developments of (Bio)Sensors and Analytical Methods for Rifamycin Antibiotics Determination
Abstract
:1. Introduction
2. Rifamycins—Properties and Clinical Treatment
3. Rifamycins Delivery Systems
4. Rifamycins Detection and Monitoring
4.1. Electrochemical (Bio)Sensors and Methods for Rifamycins Analysis
4.1.1. Electroanalytical Methods Based on Rifamycins Electroreduction
4.1.2. (Bio)Sensors and Electroanalytical Methods Applied for Rifamycins Electrooxidation Investigations
4.1.3. (Bio)Sensors and Electroanalytical Methods Applied for Rifamycins Indirect Determination
4.2. Spectrometric Methods for Rifamycins Analysis
4.2.1. UV-Vis Spectrometric Methods Applied to Rifamycins Analysis
4.2.2. IR Spectrometric Methods Applied to Rifamycins Analysis
4.3. Rifamycins Analysis Based on Luminescence Sensors and Methods
4.3.1. Fluorescence-Based Sensors and Methods Applied to Rifamycins Analysis
4.3.2. Chemiluminescence-Based Sensors and Methods Applied to Rifamycins Analysis
5. Sensors and Analytical Methods for the Investigation of Rifamycins Interaction with Biological Important Molecules
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1D | first derivative |
AA | absorbancies additivity |
ABS | acetate buffer solution |
AdSDPV | adsorptive stripping differential pulse voltammetry; |
AdSSWV | adsorptive stripping square wave voltammetry; |
ATR-FTIR | attenuated total reflectance Fourier-transform infrared spectroscopy |
BSA | bovine serum albumin |
C120 | coumarin 120 |
CC-I | 3′,5-dihydroxyflavone-7-O-β-D-galacturonide-4′-O-β-D-glucopyranoside from Cuminum cyminum seeds |
CatSt | cationic starch |
CDs | carbon dots |
CDs-HSs | carbon dots hydrogel spheres |
CF | continuous flow |
CL | chemiluminescence |
CLS | classical least square |
CoEnQ10 | coenzyme Q10 |
CoTHPP | meso-tetrakis(4-hydroxyphenyl)porphyrinato cobalt(II) |
CP(E) | carbon paste (electrode) |
CP(ME) | carbon paste (microelectrode) |
CS | chitosan |
CSWV | cyclic square-wave voltammetry |
CTAC | cetyltrimethylammonium chloride |
CV | cyclic voltammetry |
CyD | cyclodextrin |
CYP3A4/CuPPI | cytochrome P450 3A4 attached to copper polypropyleneimine |
DACCA | 7-(diethylamino)-coumarin-3-carboxylic acid N-succinimidyl ester |
DDRD | double divisor ratio spectra derivative |
DRSZ | derivative ratio spectra-zero-crossing |
DDQ | 2,3-dichloro-5,6-dicyano-1,4-benzoquinone |
DME | dropping mercury electrode |
DMF | dimethylformamide |
DMSO | dimethylsulfoxide |
DPP/DPV | differential pulse polarography/differential pulse voltammetry |
ds | double stranded |
DyNW | dysprosium nanowires |
ECL | electrochemiluminescence |
EG-CYP2EI | ethylene glycol bis(succinic acid N-hydroxysuccinimide ester)-modified cytochrome P450 2E1 |
EIS | electrochemical impedance spectroscopy |
ETB | ethambutol |
F64PcZn/TiO2/SPE | perfluorinated phthalocyanine zinc complex deposited on TiO2/screen printed electrode |
FA | folic acid |
FCR | Folin-Ciocalteu reduction |
FI | flow injection |
FRET | Förster resonance energy transfer |
FTIR | Fourier-transform infrared spectroscopy |
GC(E) | glassy carbon (electrode) |
GCE* | pre-anodized GCE |
GMO | gadolinium manganese oxide |
GNPls | graphene nanoplatelets |
GO | graphene oxide |
GSH | glutathione |
HDDR | hybrid double divisor ratio spectra |
HgFE | mercury film electrode |
HIV | human immunodeficiency virus |
HMDE | hanging mercury drop electrode |
HP-β-CyD | 2-hydroxypropyl β-cyclodextrin |
HPLC-ECD | high performance liquid chromatography-electrochemical detection |
HRP | horseradish peroxidase |
HSA | human serum albumin |
IR | infrared |
ISN | isoniazide |
ITO | indium tin oxide |
LOD | limit of detection |
LOQ | limit of quantification |
LR | linear range |
LSV | linear sweep voltammetry |
MEC | microelectrodes modified with Chitosan |
MI(Ps) | molecular imprinted (polymers) |
MIPPy-Cu-MOF/MC | molecularly imprinted polypyrrole/copper metal organic framework/mesoporous carbon |
MSNPs | mesoporous silica nanoparticles |
Mtb | mycobacteria tuberculosis |
MWCNTs | multi-walled carbon nanotubes |
NBS | N-bromosuccinimide |
NCs | nanoclusters |
NiHCF | nickel hexacyanoferrate |
NIR | near infrared |
N-P-CNDs | nitrogen and phosphorous-doped carbon nanodots |
NPs | nanoparticles |
NRIF | nanosome rifampicin (RIF encapsulated in phospholipid micelles) |
NRs | nanorods |
NSs | nanosheets |
NiTAPc | nickel tetraamino phthalocyanine |
OFM | orthogonal function method |
PB290-b-PDMAEMA240 | poly(1,2-butadiene)-block- poly(2-(dimethylamino)ethyl methacrylate (the subscripts denote the number-average degrees of polymerization of the respective segment) |
PBS | phosphate buffer solution |
PCR | principale component regression |
PEC | photoelectrochemistry |
PEG | polyethylene glycol |
PEI | polyethyleneimine |
PG(E) | pencil graphite (electrode) |
PLS | partial least squares |
PMel | polymelamine |
PPy | polypyrrole |
PVP | polyvinyl pyrrolidone |
PANSA | poly(8-anilino-1-naphthalene sulphonic acid) |
PYR | pyrazinamide |
Q-AR | Q-absorption ratio |
QDs | quantum dots |
rGO | reduced graphene oxide |
RFPT | rifapentine |
RFD | rifandin |
RIF | rifampicin |
RSV | rifamycin SV |
SCV | small colony variants |
SDS | sodium dodecylsulphate |
seATRP | simplified electrochemically mediated atom transfer radical polymerization |
SMDE | static mercury drop electrode |
SPBDDE | screen-printed boron-doped diamond electrode |
SPCE | screen-printed carbon electrode |
SPE | screen-printed electrode |
SPION | superparamagnetic iron oxide nanoparticles |
ss | single stranded |
SWP / SWV | square-wave polarography/square-wave voltammetry |
TB | tuberculosis |
TCNQ | 7,7,7,8-tetracyano quinodimethane |
TDM | therapeutic drug monitoring |
TiO2/rGO | titanium dioxide nanoparticles anchored reduced graphene oxide sheets |
UCCS | upconversion core-shell |
UV | ultraviolet |
Vis | visible |
VXC72R | Cabot Vulcan XC72R carbon black |
WHO | world health organization |
References
- Preda, D.; David, I.G.; Popa, D.-E.; Buleandra, M.; Radu, G.L. Recent trends in the development of carbon-based electrodes modified with molecularly imprinted polymers for antibiotic electroanalysis. Chemosensors 2022, 10, 243. [Google Scholar] [CrossRef]
- Yin, M.; Zhang, L.; Wei, X.; Sun, J.; Xu, D. Detection of antibiotics by electrochemical sensors based on metal-organic frameworks and their derived materials. Microchem. J. 2022, 183, 107946. [Google Scholar] [CrossRef]
- Ates, H.C.; Mohsenin, H.; Wenzel, C.; Glatz, R.T.; Wagner, H.J.; Bruch, R.; Hoefflin, N.; Spassov, S.; Streicher, L.; Lozano-Zahonero, S.; et al. Biosensor-enabled multiplexed on-site therapeutic drug monitoring of antibiotics. Adv. Mater. 2022, 34, 2104555. [Google Scholar] [CrossRef] [PubMed]
- Majdinasab, M.; Mishra, R.K.; Tang, X.; Marty, J.L. Detection of antibiotics in food: New achievements in the development of biosensors. Trends Anal. Chem. 2020, 127, 115883. [Google Scholar] [CrossRef]
- Fu, L.; Mao, S.; Chen, F.; Zhao, S.; Su, W.; Lai, G.; Yu, A.; Lin, C.-T. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011–2021). Chemosphere 2022, 297, 134127. [Google Scholar] [CrossRef]
- Wang, Q.; Xue, Q.; Chen, T.; Li, J.; Liu, Y.; Shan, X.; Liu, F.; Jia, J. Recent advances in electrochemical sensors for antibiotics and their applications. Chin. Chem. Lett. 2021, 32, 609–619. [Google Scholar] [CrossRef]
- David, I.G.; Buleandra, M.; Popa, D.E.; Cheregi, M.C.; Iorgulescu, E.E. Past and present of electrochemical sensors and methods for amphenicol antibiotic analysis. Micromachines 2022, 13, 667. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, B.; Li, T.; Zhu, X.; Guo, W. Electrochemical detection of aminoglycoside antibiotics residuals in milk based on magnetic molecularly imprinted particles and metal ions. Food Chem. 2022, 389, 133120. [Google Scholar] [CrossRef]
- Yue, F.; Li, H.; Kong, Q.; Liu, J.; Wang, G.; Li, F.; Yang, Q.; Chen, W.; Guo, Y.; Sun, X. Selection of broad-spectrum aptamer and its application in fabrication of aptasensor for detection of aminoglycoside antibiotics residues in milk. Sens. Actuators Chem. 2022, 351, 130959. [Google Scholar] [CrossRef]
- Tran, T.T.T.; Do, M.N.; Dang, T.N.H.; Tran, Q.H.; Le, V.T.; Dao, A.Q.; Vasseghian, Y. A State-of-the-art review on graphene-based nanomaterials to determine antibiotics by electrochemical techniques. Environ. Res. 2022, 208, 112744. [Google Scholar] [CrossRef]
- Joshi, A.; Kim, K.H. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosens. Bioelectron. 2020, 153, 112046. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Durairaj, S.; Prins, S.; Chen, A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical Ccompounds. Biosens. Bioelectron. 2021, 175, 112836. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, P.R.; Nanjan, P.; Kannan, S.; Shanmugaraju, S. Recent advances in luminescent metal–organic frameworks (LMOFs) based fluorescent sensors for antibiotics. Coord. Chem. Rev. 2021, 435, 213793. [Google Scholar] [CrossRef]
- Zhou, C.; Zou, H.; Sun, C.; Li, Y. Recent advances in biosensors for antibiotic detection: Selectivity and signal amplification with nanomaterials. Food Chem. 2021, 361, 130109. [Google Scholar] [CrossRef]
- Finny, A.S.; Cheng, N.; Andreescu, S. Advances in biosensing technology in the pharmaceutical industry. In Biosensing and Micro-Nano Devices; Chandra, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 243–263. [Google Scholar] [CrossRef]
- Desai, D.; Shah, M. A review: Validated analytical methods developed on antitubercular drug, rifampicin. J. Pharm. Sci. Bioscientific Res. 2015, 5, 254–265. [Google Scholar]
- Thapliyal, N.; Karpoormath, R.V.; Goyal, R.N. Electroanalysis of antitubercular drugs in pharmaceutical dosage forms and biological fluids: A review. Anal. Chim. Acta 2015, 853, 59–76. [Google Scholar] [CrossRef]
- de Oliveira, M.A.L.; Chellini, P.; Amorim, T.L. Simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol in fixed dose combination antituberculosis pharmaceutical formulations: A review. Anal. Methods 2018, 10, 1103–1116. [Google Scholar] [CrossRef]
- Farokhi-Fard, A.; Golichenari, B.; Ghanbarlou, M.M.; Zanganeh, S.; Vaziri, F. Electroanalysis of isoniazid and rifampicin: Role of nanomaterial electrode modifiers. Biosens. Bioelectron. 2019, 146, 111731. [Google Scholar] [CrossRef]
- Kotadiya, M.R.; Patel, N.F. Analytical methods practiced to quantitation of rifampicin: A captious survey. Curr. Pharm. Anal. 2021, 17, 983–999. [Google Scholar] [CrossRef]
- Dehnavi, A.; Soleymanpour, A. New chemically modified carbon paste sensor for nanomolar concentration measurement of rifampicin in biological and pharmaceutical media. Mat. Sci. Eng. C 2019, 94, 403–409. [Google Scholar] [CrossRef]
- Maslow, M.J.; Portal-Celhay, C. 27—Rifamycins, In Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 8th ed.; Bennett, J.E., Dolin, R., Blaser, M.J., Saunders, W.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 339–349.e3. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Bulko, T.V.; Tikhonova, E.G.; Sanzhakov, M.A.; Kuzikov, A.V.; Masamrekh, R.A.; Pergushov, D.V.; Schacher, F.H.; Sigolaeva, L.V. Electrochemical studies of the interaction of rifampicin and nanosome/rifampicin with dsDNA. Bioelectrochemistry 2021, 140, 107736. [Google Scholar] [CrossRef] [PubMed]
- van Ingen, J.; Aarnoutse, R.E.; Donald, P.R.; Diacon, A.H.; Dawson, R.; Plemper van Balen, G.; Gillespie, S.H.; Boeree, M.J. Why do we use 600 mg of rifampicin in tuberculosis treatment? Clin. Infect. Dis. 2011, 52, 194–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomillo, M.A.A.; Dominguez Renedo, O.; Arcos Martinez, M.J. Optimization procedure, applying the experimental-design methodology, for the determination of rifampicin after metal complexation by differential pulse adsorptive stripping voltammetry. Helv. Chim. Acta 2002, 85, 2430–2439. [Google Scholar] [CrossRef]
- Gutierrez-Fernandez, S.; Blanco-Lopez, M.C.; Lobo-Castanon, M.J.; Miranda-Ordieres, A.J.; Tunon-Blanco, P. Adsorptive stripping voltammetry of rifamycins at unmodified and surfactant-modified carbon paste electrodes. Electroanalysis 2004, 16, 1660–1666. [Google Scholar] [CrossRef]
- Rastgar, S.; Shahrokhian, S. Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: Layer-by-layer electrochemical preparation, characterization and rifampicin sensory application. Talanta 2014, 119, 156–163. [Google Scholar] [CrossRef]
- Kul, D. Electrochemical determination of rifampicin based on its oxidation using multi-walled carbon nanotube-modified glassy carbon electrodes. Turk. J. Pharm. Sci. 2020, 17, 398–407. [Google Scholar] [CrossRef]
- Zaborniak, I.; Macior, A.; Chmielarz, P. Stimuli-responsive rifampicin-based macromolecules. Materials 2020, 13, 3843. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-D.; Deng, S.-X.; Liu, Z.-F.; Kong, L.; Liu, S.-P. Fluorescence quenching of serum albumin by rifamycin antibiotics and their analytical application. Luminescence 2007, 22, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Pulikkutty, S.; Manjula, N.; Chen, T.-W.; Chen, S.-M.; Al-onazi, W.A.; Al-Mohaimeed, A.M.; Hsu, H.-Y.; Huang, C.-W.; Yu, M.-C.; Elshikh, M.S. Gadolinium manganese oxide nanorod catalyst via a facile hydrothermal approach: Application for voltammetric sensing of antibiotic drug rifampicin in pharmaceutical and biological samples. J. Electrochem. Soc. 2022, 169, 057527. [Google Scholar] [CrossRef]
- Aminov, R. History of antimicrobial drug discovery: Major classes and health impact. Biochem. Pharmacol. 2017, 133, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Munawar, A.; Schirhagl, R.; Rehman, A.; Shaheen, A.; Taj, A.; Bano, K.; Bassous, N.J.; Webster, T.J.; Khan, W.S.; Bajwa, S.Z. Facile in situ generation of bismuth tungstate nanosheet-multiwalled carbon nanotube composite as unconventional affinity material for quartz crystal microbalance detection of antibiotics. J. Hazard. Mat. 2019, 373, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Shin, S. Electrochemical behavior and differential pulse polarographic determination of rifampicin in the pharmaceutical preparations. Arch. Pharm. Res. 2001, 24, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Rifampicin (PIM 472). Available online: https://inchem.org/documents/pims/pharm/rifam.htm (accessed on 25 November 2022).
- Kozak, J.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I.; Rotko, M. First screen-printed sensor (electrochemically activated screen-printed boron-doped diamond electrode) for quantitative determination of rifampicin by adsorptive stripping voltammetry. Materials 2021, 14, 4231. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, A.; Hwa, K.-Y.; Santhan, A.; Sharma, T.S.K. Strategic orchestration of MoSe2 microspheres on β-cd functionalized rGO: A sustainable electrocatalyst for detection of rifampicin in real samples. Chemosphere 2022, 307, 135373. [Google Scholar] [CrossRef]
- Naz, F.F.; Shah, K.U.; Niazi, Z.R.; Zaman, M.; Lim, V.; Alfatama, M. Polymeric microparticles: Synthesis, characterization and in vitro evaluation for pulmonary delivery of rifampicin. Polymers 2022, 14, 2491. [Google Scholar] [CrossRef] [PubMed]
- Melo, K.J.C.; Henostroza, M.A.B.; Löbenberg, R.; Bou-Chacra, N.A. Rifampicin nanocrystals: Towards an innovative approach to treat tuberculosis. Mat. Sci. Eng. 2020, 112, 110895. [Google Scholar] [CrossRef]
- Liang, Y.-D.; Song, J.-F.; Xu, M. Electrochemiluminescence from successive electro- and chemo-oxidation of rifampicin and its application to the determination of rifampicin in pharmaceutical preparations and human urine. Spectrochim. Acta A Mol. 2007, 67, 430–436. [Google Scholar] [CrossRef]
- Motiei, M.; Pleno de Gouveia, L.; Šopík, T.; Vícha, R.; Škoda, D.; Císař, J.; Khalili, R.; Domincová Bergerová, E.; Münster, L.; Fei, H.; et al. Nanoparticle-based rifampicin delivery system development. Molecules 2021, 26, 2067. [Google Scholar] [CrossRef]
- Neto, A.S.; Pereira, P.; Fonseca, A.C.; Dias, C.; Almeida, M.C.; Barros, I.; Miranda, C.O.; de Almeida, L.P.; Morais, P.V.; Coelho, J.F.J.; et al. Highly porous composite scaffolds endowed with antibacterial activity for multifunctional grafts in bone repair. Polymers 2021, 13, 4378. [Google Scholar] [CrossRef]
- Santos, R.H.T.; Santos, N.G.; Alves, J.P.H.; Garcia, C.A.B.; Romão, L.C.P.; Arguelho, M.L.P.M. Evaluation of the physico-chemical properties of chitosan as a potential carrier for rifampicin, using voltammetric and spectrophotometric techniques. Bioelectrochemistry 2008, 72, 122–126. [Google Scholar] [CrossRef]
- Shokri, R.; Amjadi, M. Boron and nitrogen co-doped carbon dots as a chemiluminescence probe for sensitive assay of rifampicin. J. Photochem. Photobiol. 2021, 425, 113694. [Google Scholar] [CrossRef]
- Amidi, S.; Hosseinzadeh Ardakani, Y.; Amiri-Aref, M.; Ranjbari, E.; Sepehri, Z.; Bagheri, H. Sensitive electrochemical determination of rifampicin using gold nanoparticles/poly-melamine nanocomposite. RSC Adv. 2017, 7, 40111–40118. [Google Scholar] [CrossRef] [Green Version]
- Global Tuberculosis Report 2022. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (accessed on 29 November 2022).
- Santos, K.P.; Rodero, C.F.; Ribeiro, C.M.; Gremião, M.P.D.; Peccinini, R.G.; Pavan, F.R.; Pearce, C.; Gonzalez-Juarrero, M.; Chorilli, M. Development of a mucoadhesive liquid crystal system for the administration of rifampicin applicable in tuberculosis therapy. Life 2022, 12, 1138. [Google Scholar] [CrossRef] [PubMed]
- Galdopórpora, J.M.; Martinena, C.; Bernabeu, E.; Riedel, J.; Palmas, L.; Castangia, I.; Manca, M.L.; Garcés, M.; Lázaro-Martinez, J.; Salgueiro, M.J.; et al. Inhalable mannosylated rifampicin–curcumin co-loaded nanomicelles with enhanced in vitro antimicrobial efficacy for an optimized pulmonary tuberculosis therapy. Pharmaceutics 2022, 14, 959. [Google Scholar] [CrossRef]
- Ma, Y.; Zhan, B.-T.; Zhao, L.-X.; Guo, G.-S.; Lin, J.-M. Determination of rifampicin by peroxomonosulfate-cobalt(II) chemiluminescence system. Chin. J. Chem. 2008, 26, 905–910. [Google Scholar] [CrossRef] [Green Version]
- Ajayi, R.F.; Sidwaba, U.; Feleni, U.; Douman, S.F.; Tovide, O.; Botha, S.; Baker, P.; Fuku, X.G.; Hamid, S.; Waryo, T.T.; et al. Chemically amplified cytochrome P450-2E1 drug metabolism nanobiosensor for rifampicin anti-tuberculosis drug. Electrochim. Acta 2014, 128, 149–155. [Google Scholar] [CrossRef]
- Amusengeri, A.; Khan, A.; Tastan Bishop, Ö. The structural basis of mycobacterium tuberculosis RpoB drug-resistant clinical mutations on rifampicin drug binding. Molecules 2022, 27, 885. [Google Scholar] [CrossRef]
- Sagar, P.; Srivastava, M.; Srivastava, S.K. Electrochemical sensor for the anti-tuberculosis drug rifampicin on CuO@rGO-nanocomposite-modified GCE by voltammetry techniques. ChemistrySelect 2022, 7, e202202271. [Google Scholar] [CrossRef]
- Vinothkumar, V.; Sangili, A.; Chen, S.-M.; Abinaya, M. Additive-free synthesis of BiVO4 microspheres as an electrochemical sensor for determination of antituberculosis drug rifampicin. Colloids Surf. Physicochem. Eng. Asp. 2021, 624, 126849. [Google Scholar] [CrossRef]
- Chatterjee, K.; Kuo, C.W.; Chen, A.; Chen, P. Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper. J. Nanobiotechnol. 2015, 13, 46. [Google Scholar] [CrossRef] [Green Version]
- Szlósarczyk, M.; Piech, R.; Milc, A.; Hubicka, U. Fast and sensitive voltammetric method for the determination of rifampicin on renewable amalgam film electrode. Sensors 2021, 21, 5792. [Google Scholar] [CrossRef] [PubMed]
- Maher, H.M.; Youssef, R.M. Simultaneous determination of ternary drug mixtures using square wave polarography subjected to non-parametric and chemometric peak convolution. Chemom. Intell. Lab. Syst. 2008, 94, 95–103. [Google Scholar] [CrossRef]
- du Toit, L.C.; Pillay, V.; Danckwerts, M.P. Tuberculosis chemotherapy: Current drug delivery approaches. Respir. Res. 2006, 7, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Puri, V.; Kumar, P.; Singh, I.; Huanbutta, K. Development and evaluation of rifampicin loaded alginate–gelatin biocomposite microfibers. Polymers 2021, 13, 1514. [Google Scholar] [CrossRef] [PubMed]
- Yulug, B.; Hanoglu, L.; Kilic, E.; Schabitz, W.R. RIFAMPICIN: An antibiotic with brain protective function. Brain Res. Bull. 2014, 107, 37–42. [Google Scholar] [CrossRef]
- Umeda, T.; Hatanaka, Y.; Sakai, A.; Tomiyama, T. Nasal rifampicin improves cognition in a mouse model of dementia with Lewy bodies by reducing α-Synuclein oligomers. Int. J. Mol. Sci. 2021, 22, 8453. [Google Scholar] [CrossRef]
- Umeda, T.; Uekado, R.; Shigemori, K.; Eguchi, H.; Tomiyama, T. Nasal rifampicin halts the progression of tauopathy by inhibiting Tau oligomer propagation in Alzheimer brain extract-injected mice. Biomedicines 2022, 10, 297. [Google Scholar] [CrossRef]
- Yulug, B.; Hanoglu, L.; Ozansoy, M.; Isık, D.; Kilic, U.; Kilic, E.; Schabitz, W.R. Therapeutic role of rifampicin in Alzheimer’s disease. Psychiat. Clin. Neuros. 2018, 72, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.R.K.; Panikkanvalappil, S.R.; El-Sayed, M.A. Enhancing the efficiency of gold nanoparticles treatment of cancer by increasing their rate of endocytosis and cell accumulation using rifampicin. J. Am. Chem. Soc. 2014, 136, 4464–4467. [Google Scholar] [CrossRef]
- Chakraborty, A.; Panda, A.K.; Ghosh, R.; Roy, I.; Biswas, A. Depicting the DNA binding and photo-nuclease ability of anti-mycobacterial drug rifampicin: A biophysical and molecular docking perspective. Int. J. Biol. Macromol. 2019, 127, 187–196. [Google Scholar] [CrossRef]
- Zhang, N.; Brites Helu, M.; Zhang, K.; Fang, X.; Yin, H.; Chen, J.; Ma, S.; Fang, A.; Wang, C. Multiwalled carbon nanotubes-CeO2 nanorods: A “nanonetwork” modified electrode for detecting trace rifampicin. Nanomaterials 2020, 10, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veera Manohara Reddy, Y.; Sravani, B.; Łuczak, T.; Mallikarjuna, K.; Madhavi, G. An ultra-sensitive rifampicin electrochemical sensor based on titanium nanoparticles (TiO2) anchored reduced graphene oxide modified glassy carbon electrode. Colloids Surf. 2021, 608, 125533. [Google Scholar] [CrossRef]
- Chokkareddy, R.; Bhajanthri, N.K.; Redhi, G.G. A novel electrode architecture for monitoring rifampicin in various pharmaceuticals. Int. J. Electrochem. Sci. 2017, 12, 9190–9203. [Google Scholar] [CrossRef]
- Rawool, C.R.; Srivastava, A.K. A dual template imprinted polymer modified electrochemical sensor based on Cu metal organic framework/mesoporous carbon for highly sensitive and selective recognition of rifampicin and isoniazid. Sens. Actuators Chem. 2019, 288, 493–506. [Google Scholar] [CrossRef]
- Al-Joufi, F.; Elmowafy, M.; Alruwaili, N.K.; Alharbi, K.S.; Shalaby, K.; Alsharari, S.D.; Ali, H.M. Mucoadhesive in situ rectal gel loaded with rifampicin: Strategy to improve bioavailability and alleviate liver toxicity. Pharmaceutics 2021, 13, 336. [Google Scholar] [CrossRef]
- Asadpour-Zeynali, K.; Soheili-Azad, P. Simultaneous polarographic determination of isoniazid and rifampicin by differential pulse polarography method and support vector regression. Electrochim. Acta 2010, 55, 6570–6576. [Google Scholar] [CrossRef]
- Anjani, Q.K.; Domínguez-Robles, J.; Utomo, E.; Font, M.; Martínez-Ohárriz, M.C.; Permana, A.D.; Cárcamo-Martínez, Á.; Larrañeta, E.; Donnelly, R.F. Inclusion complexes of rifampicin with native and derivatized cyclodextrins: In silico modeling, formulation, and characterization. Pharmaceuticals 2022, 15, 20. [Google Scholar] [CrossRef]
- Niewolik, D.; Bednarczyk-Cwynar, B.; Ruszkowski, P.; Kazek-Kęsik, A.; Dzido, G.; Jaszcz, K. Biodegradable and bioactive carriers based on poly(betulin disuccinate-co-sebacic acid) for rifampicin delivery. Pharmaceutics 2022, 14, 579. [Google Scholar] [CrossRef]
- Marchianò, V.; Matos, M.; Marcet, I.; Cabal, M.P.; Gutiérrez, G.; Blanco-López, M.C. Stability of non-ionic surfactant vesicles loaded with rifamycin S. Pharmaceutics 2022, 14, 2626. [Google Scholar] [CrossRef]
- Subramaniam, S.; Thomas, N.; Gustafsson, H.; Jambhrunkar, M.; Kidd, S.P.; Prestidge, C.A. Rifampicin-loaded mesoporous silica nanoparticles for the treatment of intracellular infections. Antibiotics 2019, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Joyce, P.; Ulmefors, H.; Maghrebi, S.; Subramaniam, S.; Wignall, A.; Jõemetsa, S.; Höök, F.; Prestidge, C.A. Enhancing the cellular uptake and antibacterial activity of rifampicin through encapsulation in mesoporous silica nanoparticles. Nanomaterials 2020, 10, 815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Park, J.-K.; Son, K.-H.; Lee, J.-W. PCL/sodium-alginate based 3D-printed dual drug delivery system with antibacterial activity for osteomyelitis therapy. Gels 2022, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- Grotz, E.; Tateosian, N.L.; Salgueiro, J.; Bernabeu, E.; Gonzalez, L.; Manca, M.L.; Amiano, N.; Valenti, D.; Manconi, M.; García, V.; et al. Pulmonary delivery of rifampicin-loaded soluplus micelles against Mycobacterium tuberculosis. J. Drug Deliv. Sci. Technol. 2019, 53, 101170. [Google Scholar] [CrossRef]
- Fernández-Gutiérrez, M.; Pérez-Köhler, B.; Benito-Martínez, S.; García-Moreno, F.; Pascual, G.; García-Fernández, L.; Aguilar, M.R.; Vázquez-Lasa, B.; Bellón, J.M. Development of biocomposite polymeric systems loaded with antibacterial nanoparticles for the coating of polypropylene biomaterials. Polymers 2020, 12, 1829. [Google Scholar] [CrossRef] [PubMed]
- Chawla, P.K.; Udwadia, Z.F.; Soman, R.; Mahashur, A.A.; Amale, R.A.; Dherai, A.J.; Lokhande, R.V.; Naik, P.R.; Ashavaid, T.F. Importance of therapeutic drug monitoring of rifampicin. J. Assoc. Physicians India 2016, 64, 68–72. [Google Scholar]
- Hammam, E.; Beltagi, A.M.; Ghoneim, M.M. Voltammetric assay of rifampicin and isoniazid drugs, separately and combined in bulk, pharmaceutical formulations and human serum at a carbon paste electrode. Microchem. J. 2004, 77, 53–62. [Google Scholar] [CrossRef]
- Li, B.; He, Y.; Lv, J.; Zhang, Z. Simultaneous determination of rifampicin and isoniazid by continuous-flow chemiluminescence with artificial neural network calibration. Anal. Bioanal. Chem. 2005, 383, 817–824. [Google Scholar] [CrossRef]
- Wahdan, T. Voltammetric method for the simultaneous determination of rifampicin and isoniazid in pharmaceutical formulations. Chem. Anal. 2005, 50, 457–464. [Google Scholar]
- Leandro, K.C.; Carvalho, J.M.; Giovanelli, L.F.; Moreira, J.C. Development and validation of an electroanalytical methodology for determination of isoniazid and rifampicin. Braz. J. Pharm. Sci. 2009, 45, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Kawde, A.N.; Temerk, Y.; Farhan, N. Adsorptive stripping voltammetry of antibiotics rifamycin SV and rifampicin at renewable pencil electrodes. Acta Chim. Slov. 2014, 61, 398–405. [Google Scholar]
- Yan, H.; Zhou, Y.; Xie, Q.; Zhang, Y.; Zhang, P.; Xiao, H.; Wang, W.; Yao, S. Simultaneous analysis of isoniazid and rifampicin by high-performance liquid chromatography with gradient elution and wall-jet/thin-layer electrochemical detection. Anal. Methods 2014, 6, 1530–1537. [Google Scholar] [CrossRef]
- Franke, C.; Ajayi, R.F.; Uhuo, O.; Januarie, K.; Iwuoha, E. Metallodendrimer-sensitised cytochrome P450 3A4 electrochemical biosensor for TB drugs. Electroanalysis 2020, 32, 3075–3085. [Google Scholar] [CrossRef]
- Lomillo, M.A.A.; Dominguez Renedo, O.; Arcos Martinez, M.J. Resolution of ternary mixtures of rifampicin, isoniazid and pyrazinamide by differential pulse polarography and partial squares method. Anal. Chim. Acta 2001, 449, 167–177. [Google Scholar] [CrossRef]
- Shiri, S.; Pajouheshpoor, N.; Khoshsafar, H.; Amidi, S.; Bagheri, H. An electrochemical sensor for the simultaneous determination of rifampicin and isoniazid using a C-dots@CuFe2 O4 nanocomposite modified carbon paste electrode. New J. Chem. 2017, 41, 15564–15573. [Google Scholar] [CrossRef]
- Girousi, S.T.; Gherghi, C.; Karava, M.K. DNA-modified carbon paste electrode applied to the study of interaction between Rifampicin (RIF) and DNA in solution and at the electrode surface. J. Pharm. Biomed. Anal. 2004, 36, 851–858. [Google Scholar] [CrossRef]
- Radhi, M.M.; Ibrahim, A.I.; Al-Haidarie, Y.K.; Al-Asadi, S.A.; Al-Mulla, E.A.J. Rifampicin: Electrochemical effect on blood component by cyclic voltammetry using nano-sensor. Nano Biomed. Eng. 2019, 11, 150–156. [Google Scholar] [CrossRef]
- Kamat, B.P.; Seerharamappa, J. Mechanism of interaction of vincristine sulphate and rifampicin with bovine serum albumin: A spectroscopic study. J. Chem. Sci. 2005, 117, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Yu, O.-Y.; Cheng, Y.-F.; Huang, S.-Y.; Bai, A.-M.; Hu, Y.-J. Probing the binding of rifampicin to bovine serum albumin in aqueous solution. Solut. Chem. 2011, 40, 1711–1723. [Google Scholar] [CrossRef]
- Naveenraj, S.; Anandan, S. Binding of serum albumins with bioactive substances—Nanoparticles to drugs. J. Photochem. Photobiol. 2013, 14, 53–71. [Google Scholar] [CrossRef]
- Ribeiro da Cunha, B.; Fonseca, L.P.; Calado, C.R.C. Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning. Appl. Microbiol. Biotechnol. 2021, 105, 1269–1286. [Google Scholar] [CrossRef]
- Biçer, E.; Özdemir, S. Voltammetric and spectroscopic studies on the interaction of anti-cancer herbal drug rutin with an anti-tuberculosis agent rifampicin. Russ. J. Electrochem. 2010, 46, 896–903. [Google Scholar] [CrossRef]
- Biçer, E.; Pehlivan, V. Voltammetric, FTIR spectroscopic and thermal analysis studies on adduct formations of rifampicin with soft nucleophiles cysteine and glutathione. Russ. J. Electrochem. 2020, 56, 556–569. [Google Scholar] [CrossRef]
- Al-Hashimi, B.; Rahman, H.S.; Omer, K.M. Highly luminescent and biocompatible P and N co-doped passivated carbon nanodots for the sensitive and selective determination of rifampicin using the inner filter effect. Materials 2020, 13, 2275. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Weng, X.; Chen, Z. Highly efficient removal of antibiotic rifampicin from aqueous solution using green synthesis of recyclable nano-Fe3O4. Environ. Pollut. 2019, 247, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Mahdi, W.A.; Alshehri, S.; Bukhari, S.I.; Almaniea, M.A. Application of green nanoemulsion for elimination of rifampicin from a bulk aqueous solution. Int. J. Environ. Res. Public Health 2021, 18, 5835. [Google Scholar] [CrossRef]
- Ebratkhahan, M.; Zarei, M.; Akpinar, I.Z.; Metin, Ö. One-pot synthesis of graphene hydrogel/M (M: Cu, Co, Ni) nanocomposites as cathodes for electrochemical removal of rifampicin from polluted water. Environ. Res. 2022, 214, 113789. [Google Scholar] [CrossRef]
- El-Shafie, A.S.; Ahsan, I.; Radhwani, M.; Al-Khangi, M.A.; El-Azazy, M. Synthesis and application of cobalt oxide (Co3O4)-impregnated olive stones biochar for the removal of rifampicin and tigecycline: Multivariate controlled performance. Nanomaterials 2022, 12, 379. [Google Scholar] [CrossRef]
- da Silva Duarte, J.L.; Solano, A.M.S.; Arguelho, M.L.P.M.; Tonholo, J.; Martínez-Huitle, C.A.; de Paiva e Silva Zanta, C.L. Evaluation of treatment of effluents contaminated with rifampicin by Fenton, electrochemical and associated processes. J. Water Proc. Eng. 2018, 22, 250–257. [Google Scholar] [CrossRef]
- Brito, L.R.D.; Ganiyu, S.O.; dos Santos, E.V.; Oturan, M.A.; Martínez-Huitle, C.A. Removal of antibiotic rifampicin from aqueous media by advanced electrochemical oxidation: Role of electrode materials, electrolytes and real water matrices. Electrochim. Acta 2021, 396, 139254. [Google Scholar] [CrossRef]
- Lomillo, M.A.A.; Dominguez Renedo, O.; Arcos Martinez, M.J. Optimization of the experimental parameters in the determination of rifampicin by adsorptive stripping voltammetry. Electroanalysis 2002, 14, 634–637. [Google Scholar] [CrossRef]
- Alonso, M.A.; Sanllorente, S.; Sarabia, L.A.; Arcos, M.J. Optimization of the experimental parameters in the determination of rifamycin SV by adsorptive stripping voltammetry. Anal. Chim. Acta 2000, 405, 123–133. [Google Scholar] [CrossRef]
- Tyszczuk, K.; Korolczuk, M. New protocol for determination of rifampicine by adsorptive stripping voltammetry. Electroanalysis 2009, 21, 101–106. [Google Scholar] [CrossRef]
- de-Oliveira, P.R.; Schibelbain, A.F.; Neiva, E.G.; Zarbin, A.J.G.; Marcolino Junior, L.H.; Bergamini, M.F. Nickel hexacyanoferrate supported at nickel nanoparticles for voltammetric determination of rifampicin. Sens. Actuators 2018, 260, 816–823. [Google Scholar] [CrossRef]
- Zou, J.; Huang, L.-L.; Jiang, X.-Y.; Jiao, F.-P.; Yu, J.-G. Electrochemical behaviors and determination of rifampicin on graphene nanoplatelets modified glassy carbon electrode in sulfuric acid solution. Desalination Water Treat. 2018, 120, 272–281. [Google Scholar] [CrossRef]
- Huang, Q.; Li, X.K.; Feng, S.X.; Zhuge, W.F.; Liu, F.P.; Peng, J.Y.; Mo, S.C. An electrochemical sensor based on the composite of molybdenum carbides and a multiwalled carbon nanotube modified electrode for the ultrasensitive detection of rifampicin. Anal. Methods 2018, 10, 3594–3601. [Google Scholar] [CrossRef]
- Sonkar, P.K.; Yadav, M.; Prakash, K.; Ganesan, V.; Sankar, M.; Yadav, D.K.; Gupta, R. Electrochemical sensing of rifampicin in pharmaceutical samples using meso-tetrakis(4-hydroxyphenyl)porphyrinato cobalt(II) anchored carbon nanotubes. J. Appl. Electrochem. 2018, 48, 937–946. [Google Scholar] [CrossRef]
- Bano, K.; Bajwa, S.Z.; Ihsan, A.; Hussain, I.; Jameel, N.; Rehman, A.; Taj, A.; Younus, S.; Zubair Iqbal, M.; Butt, F.K.; et al. Synthesis of SPIONs-CNT based novel nanocomposite for effective amperometric sensing of first-line antituberculosis drug rifampicin. J. Nanosci. Nanotechnol. 2020, 20, 2130–2137. [Google Scholar] [CrossRef]
- Asadpour-Zeynali, K.; Mollarasouli, F. Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSecore-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens. Bioelectron. 2017, 92, 509–516. [Google Scholar] [CrossRef]
- Chen, T.-W.; Vasantha, A.S.; Chen, S.-M.; Al Farraj, D.A.; Elshikh, M.S.; Alkufeidy, R.M.; Al Khulaifi, M.M. Sonochemical synthesis and fabrication of honeycomb like zirconium dioxide with chitosan modified electrode for sensitive electrochemical determination of anti-tuberculosis (TB) drug. Ultrason. Sonochem. 2019, 59, 104718. [Google Scholar] [CrossRef]
- Xing, R.; Zhao, X.; Xu, Y.; Yang, H.; Chang, Z.; Qu, J.; Liu, X.; Yang, J.H.; Liu, S. Sensitive detection of rifampicin based on Au-carbon nanocomposite. J. Nanosci. Nanotechnol. 2018, 18, 62–67. [Google Scholar] [CrossRef]
- Blidar, A.; Trashin, S.; Carrion, E.N.; Gorun, S.M.; Cristea, C.; De Wael, K. Enhanced photoelectrochemical detection of an analyte triggered by its concentration by a singlet oxygen-generating fluoro photosensitizer. ACS Sens. 2020, 5, 3501–3509. [Google Scholar] [CrossRef] [PubMed]
- Daneshgar, P.; Norouzi, P.; Dousty, F.; Ganjali, M.R.; Moosavi-Movahedi, A.A. Dysprosium yydroxide nanowires modified electrode for determination of rifampicin drug in human urine and capsules by adsorptive square wave voltammetry. Curr. Pharm. Anal. 2009, 5, 246–255. [Google Scholar] [CrossRef]
- Gan, T.; Shi, Z.; Wang, K.; Sun, J.; Lv, Z.; Liu, Y. Rifampicin determination in human serum and urine based on a disposable carbon paste microelectrode modified with a hollow manganese oxide@mesoporous silica oxide core-shell nanohybrid. Can. J. Chem. 2015, 93, 1061–1068. [Google Scholar] [CrossRef]
- Peng, J.; Huang, Q.; Liu, Y.; Liu, F.; Zhang, C.; Huang, Y.; Huang, W. The synthesis of graphene oxide covalently linked with nickeltetraamino phthalocyanine: A photoelectrochemical sensor for the analysis of rifampicin irradiated with blue light. J. Chin Chem. Soc. 2019, 66, 1311–1317. [Google Scholar] [CrossRef]
- Lomillo, M.A.A.; Kauffmann, J.M.; Martinez, M.J.A. HRP-based biosensor for monitoring rifampicin. Biosens. Bioelectron. 2003, 18, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Lomillo, M.A.A.; Renedo, O.D.; Martinez, M.J.A. Optimization of a cyclodextrin-based sensor for rifampicin monitoring. Electrochim. Acta 2005, 50, 1807–1811. [Google Scholar] [CrossRef]
- Gutierrez-Fernandez, S.; Lobo-Castanon, M.J.; Miranda-Ordieres, A.J.; Tunon-Blanco, P.; Carriedo, G.A.; Garcia-Alonso, F.J.; Fidalgo, J.I. Molecularly imprinted polyphosphazene films as recognition element in a voltammetric rifamycin SV sensor. Electroanalysis 2001, 13, 1399–1404. [Google Scholar] [CrossRef]
- David, I.G.; Buleandra, M.; Popa, D.E.; Cheregi, M.C.; David, V.; Iorgulescu, E.E.; Tartareanu, G.O. Recent developments in voltammetric analysis of pharmaceuticals using disposable pencil graphite electrodes. Processes 2022, 10, 472. [Google Scholar] [CrossRef]
- Blanco-Lopez, M.C.; Gutierrez-Fernandez, S.; Lobo-Castanon, M.J.; Miranda-Ordieres, A.J.; Tunon-Blanco, P. Electrochemical sensing with electrodes modified with molecularly imprinted polymer films. Anal. Bioanal. Chem. 2004, 378, 1922–1928. [Google Scholar] [CrossRef]
- Mollarasouli, F.; Kurbanoglu, S.; Asadpour-Zeynali, K.; Ozkan, S.A. Non-enzymatic monitoring of hydrogen peroxide using novel nanosensor based on CoFe2O4@CdSeQD magnetic nanocomposite and rifampicin mediator. Anal. Bioanal. Chem. 2020, 412, 5053–5065. [Google Scholar] [CrossRef]
- Arifa Begum, S.K.; Basava, R.D.; Rama Rao, N. Simultaneous estimation of rifampicin and isoniazid in combined dosage formby a simple UV spectrophotometric method. Der. Pharm. Lett. 2013, 5, 419–426. [Google Scholar]
- Tilinca, M.; Hancu, G.; Mircia, E.; Iriminescu, D.; Rusu, A.; Vlad, R.A.; Barabás, E. Simultaneous determination of isoniazid and rifampicin by uv spectrophotometry. Farmacia 2017, 65, 219–224. [Google Scholar]
- Marques, M.S.; Dal Pont Morisso, F.; Poletto, F.; Külkamp Guerreiro, I.C. Development of derivative spectrophotometric method for simultaneous determination of pyrazinamide and rifampicin in cubosome formulation. Drug Anal. Res. 2021, 5, 46–50. [Google Scholar] [CrossRef]
- Khamar, J.C.; Patel, S.A. Q-Absorbance Ratio spectrophotometric method for the simultaneous estimation of rifampicin and piperine in their combined capsule cosage. J. Appl. Pharm. Sci. 2012, 2, 137–141. [Google Scholar] [CrossRef]
- Bhusari, S.S.; Waghmare, S.H.; Wakte, P.S. Development and validation of q-absorbance ratio spectrophotometric method for the simultaneous estimation of rifampicin and its bioenhancer; 3′, 5-dihydroxyflavone-7-o-β-d-galacturonide-4′-o-β-d-glucopyranoside; in bulk and formulation. J. Pharm. Sci. Innov. 2019, 8, 182–188. [Google Scholar] [CrossRef]
- Youssef, R.M.; Maher, H.M. A new hybrid double divisor ratio spectra method for the analysis of ternary mixtures. Spectrochim. Acta Mol. 2008, 70, 1152–1166. [Google Scholar] [CrossRef]
- Lomillo, M.A.A.; Dominguez Renedo, O.; Arcos Martinez, M.J. Resolution of binary mixtures of rifamycin SV and rifampicin by UV/VIS spectroscopy and partial least-squares method (PLS). Chem. Biodiv. 2004, 1, 1336–1343. [Google Scholar] [CrossRef]
- Stets, S.; Tavares, T.M.; Peralta-Zamora, P.G.; Pessoa, C.A.; Nagata, N. Simultaneous determination of rifampicin and isoniazid in urine and pharmaceutical formulations by multivariate visible spectrophotometry. J. Braz. Chem. Soc. 2013, 24, 1198–1205. [Google Scholar] [CrossRef]
- Shah, U.; Patel, S.; Raval, M.; Desai, P. Chemometric assisted spectrophotometric methods for the simultaneous determination of Rifampicin and Piperine in bulk and capsule. Indian J. Pharm. Educ. Res. 2015, 49, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Espinosa-Mansilla, A.; Acedo Valenzuela, M.I.; Muñoz de la Peña, A.; Salinas, F.; Cañada Cañada, F. Comparative study of partial least squares and a modification of hybrid linear analysis calibration in the simultaneous spectrophotometric determination of rifampicin, pyrazinamide and isoniazid. Anal. Chim. Acta 2001, 427, 129–136. [Google Scholar] [CrossRef]
- Mariappan, T.T.; Jindal, K.C.; Singh, S. Overestimation of rifampicin during colorimetric analysis of anti-tuberculosis products containing isoniazid due to formation of isonicotinyl hydrazone. J. Pharm. Biomed. Anal. 2004, 36, 905–908. [Google Scholar] [CrossRef]
- Khan, M.F.; Rita, S.A.; Kayser, M.S.; Islam, M.S.; Asad, S.; Bin Rashid, R.; Bari, M.A.; Rahman, M.M.; Al Aman, D.A.A.; Setu, N.I.; et al. Theoretically guided analytical method development and validation for the estimation of rifampicin in a mixture of isoniazid and pyrazinamide by UV spectrophotometer. Front. Chem. 2017, 5, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.U.; Shah, F.; Khan, R.A.; Ismail, B.; Khan, A.M.; Muhammad, H. Preconcentration of rifampicin prior to its efficient spectroscopic determination in the wastewater samples based on a nonionic surfactant. Turk. J. Chem. 2021, 45, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Barsoum, N.B.; Kamel, M.S.; Diab, M.M.A. Spectrophotometric determination of isoniazid and rifampicin from pharmaceutical preparations and biological fluids. Res. J. Agric. Biol. Sci. 2008, 4, 471–484. [Google Scholar]
- Sadeghi, S.; Karimi, E. Spectrophotometric determination of rifampicin through chelate formation and charge transfer complexation in pharmaceutical preparation and biological fluids. Chem. Pharm. Bull. 2006, 54, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Swamy, N.; Basavaiah, K. Spectrophotometric determination of rifampicin in bulk drug and pharmaceutical formulations based on redox and complexation reactions. J. Appl. Spectrosc. 2017, 84, 694–703. [Google Scholar] [CrossRef]
- Swamy, N.; Basavalah, K.; Vamsikrishna, P. Stability-indicating UV-spectrophotometric assay of rifampycin. Insight Pharm. Sci. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Tanasă, I.D.; Bulgariu, A.E.; Siriţeanu, C.; Bulgariu, L. Spectrophotometric determination of rifampicin in aqueous solution. Bul. Inst. Politeh. Iaşi. 2022, 68, 25–34. [Google Scholar]
- Divakar, T.E.; Sunitha, S.; Deepthi, G.K.; Benzamin, T.; Babu, N.P. Assay of rifampicin in bulk and its dosage forms by visible spectrophotometry using chloranilic acid. Int. J. Chem. Environ. Pharm. Res. 2012, 3, 64–67. [Google Scholar]
- Lutfullah; Sharma, S.; Rahman, N.; Azmi, S.N.H. Spectrophotometric determination of U(VI) with rifampicin in soil samples. J. Chin. Chem. Soc. 2011, 58, 127–135. [Google Scholar] [CrossRef]
- Teng, L.S.; Wang, D.; Song, J.; Zhang, Y.B.; Guo, W.L.; Teng, L.R. Application of near infrared spectroscopy in rapid and simultaneous determination of essential components in five varieties of anti-tuberculosis tablets. Guang Pu Xue Yu Guang Pu Fen Xi 2008, 28, 1814–1818. [Google Scholar] [PubMed]
- de Oliveira Neves, A.C.; Soares, G.M.; Cavalcante de Morais, S.; da Costa, F.S.L.; Porto, D.L.; Gomes de Lima, K.M. Dissolution testing of isoniazid, rifampicin, pyrazinamide and ethambutol tablets using near-infrared spectroscopy (NIRS) and multivariate calibration. J. Pharm. Biomed. Anal. 2012, 57, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Chellini, P.R.; Mendes, T.O.; Franco, P.H.C.; Porto, B.L.S.; Tippavajhala, V.K.; César, I.C.; Oliveira, M.A.L.; Pianetti, G.A. Simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol in 4-FDC tablet by Raman spectroscopy associated to chemometric approach. Vib. Spectrosc. 2017, 90, 14–20. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, P.; Gong, H.; Li, P.; Wang, X.; He, Y. Determination of rifampicin based on fluorescence quenching of GSH capped CdTe/ZnS QDs. J. Lumin. 2012, 132, 2484–2488. [Google Scholar] [CrossRef]
- Hooshyar, Z.; Bardajee, G.R. Fluorescence enhancement of glutathione capped CdTe/ZnS quantum dots by embedding into cationic starch for sensitive detection of rifampicin. Spectrochim. Acta Part 2017, 173, 144–150. [Google Scholar] [CrossRef]
- Chen, X.B.; Kang, D.G.; Li, S.; Zhao, C.Y.; Chen, X.S.; Ding, H.P. Fluorescence spectroscopy study of human serum albumin quenched by rifampicin capsules. Guang Pu Xue Yu Guang Pu Fen Xi 2006, 26, 674–677. [Google Scholar]
- Tan, N.-D.; Yin, J.-H.; Yuan, Y.; Meng, L.; Xu, N. One-pot hydrothermal synthesis of highly fluorescent polyethyleneimine-capped copper nanoclusters for specific detection of rifampicin. Bull. Korean Chem. Soc. 2018, 39, 657–664. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, Q.; Tang, C.; Zhang, M.; Huang, Z.; Cai, Z. Fluorescent folic acid-capped copper nanoclusters for the determination of rifampicin based on inner filter effect. Spectrochim. Acta A Mol. 2023, 286, 121944. [Google Scholar] [CrossRef]
- Wu, X.-M.; Zhang, J.-H.; Feng, Z.-S.; Chen, W.-X.; Zhang, F.; Li, Y. An ultra-sensitive “turn-off” fluorescent sensor for the trace detection of rifampicin based on glutathione-stabilized copper nanoclusters. Analyst 2020, 145, 1227–1235. [Google Scholar] [CrossRef]
- Su, J.; Xiang, X.; Lv, R.; Li, H.; Fu, X.; Yang, B.; Gu, W.; Liu, X. Rapid and high-selectivity detection of rifampicin based on upconversion luminescence core-shell structure composites. J. Solid State Chem. 2018, 266, 9–15. [Google Scholar] [CrossRef]
- Li, Y.; Mou, C.; Xie, Z.; Zheng, M. Carbon dots embedded hydrogel spheres for sensing and removing rifampicin. Dyes. Pigm. 2022, 198, 110023. [Google Scholar] [CrossRef]
- Trousil, J.; Filippov, S.K.; Hrubý, M.; Mazel, T.; Syrová, Z.; Cmarko, D.; Svidenská, S.; Matějková, J.; Kováčik, L.; Porsch, B.; et al. System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 307–315. [Google Scholar] [CrossRef]
- Ma, H.-Y.; Zheng, X.-W.; Zhang, Z.-J. Flow-injection electrochemiluminescence detecting rifampicin based on its sensitizing effect. Chin. J. Chem. 2004, 22, 279–282. [Google Scholar] [CrossRef]
- Le-Deygen, I.M.; Safronova, A.S.; Mamaeva, P.V.; Kolmogorov, I.M.; Skuredina, A.A.; Kudryashova, E.V. Drug–membrane interaction as revealed by spectroscopic methods: The role of drug structure in the example of rifampicin, levofloxacin and rapamycin. Biophysica 2022, 2, 353–365. [Google Scholar] [CrossRef]
- Alsultan, A.; Peloquin, C.A. Therapeutic drug monitoring in the treatment of tuberculosis: An update. Drugs 2014, 74, 839–854. [Google Scholar] [CrossRef] [PubMed]
Electrode | Technique | LR (mol/L) | LOD (mol/L) | Sample | Ref. |
---|---|---|---|---|---|
Rifampicin (RIF) | |||||
DME | DPP | 1.00 × 10−7–1.00 × 10−4 | - | Spiked human serum | [70] |
SMDE | DPP | 1.00 × 10−7–1.00 × 10−5 | 1.00 × 10−8 | Pharmaceuticals | [34] |
HMDE | SWPOFP SWP1D | 6.00 × 10−7–1.21 × 10−5 6.00 × 10−7–1.21 × 10−5 | 2.42 × 10−7 2.59 × 10−7 | Pharmaceuticals; urine | [56] |
HMDE | DPV | 4.87× 10−7–2.43 × 10−6 | 2.31 × 10−7 | Pharmaceuticals | [83] |
HMDE | AdSDPV AdSSWV | 3.32 × 10−8–3.85 × 10−7 | 6.13 × 10−9 9.83 × 10−9 | Pharmaceuticals; urine | [104] |
HMDE | AdSDPV Cu(II) complexation | 1.99 × 10−6–2.78 × 10−6 | 1.70 × 10−7 | Pharmaceuticals; urine | [25] |
HgFE/Ag | DPV | 4.87 × 10−7–3.00 × 10−4 | 1.46 × 10−7 | Pharmaceuticals | [55] |
GCE | HPLC/ECD | 1.00 × 10−5–1.00 × 10−1 | 5.00 × 10−10 | Pharmaceuticals; urine | [85] |
Pb/GCE | AdSSWV | 2.50 × 10−10–1.00 × 10−8 | 9.00 × 10−11 | Pharmaceuticals | [106] |
NiHCF/GCE | CV | 5.00 × 10−6–5.00 × 10−4 | 2.60 × 10−6 | Simulated human urine | [107] |
MWCNTs/GCE | CV | 5.00 × 10−4–4.00 × 10−3 | 5.00 × 10−4 | Blood component | [90] |
MWCNTs/GCE | DPV SWV | 4.00 × 10−8–1.00 × 10−5 | 7.51 × 10−9 1.13 × 10−8 | Pharmaceuticals | [28] |
GNPls/GCE | CV; DPV | 1.00 × 10−9–1.00 × 10−4 | 5.00 × 10−10 | - | [108] |
GMONRs/GCE | DPV | 1.50 × 10−7–1.36 × 10−4 | 7.10 × 10−8 | Pharmaceuticals; serum; urine | [31] |
MWCNTs-CeO2 NRs/GCE | DPV | 1.00 × 10−13–1.00 × 10−6 | 3.40 × 10−14 | Human serum | [65] |
MWCNTs–Mo2C/GCE | - | 5.00 × 10−7–7.40 × 10−5 | 4.50 × 10−8 | Pharmaceuticals; human serum | [109] |
MWCNTs-CoTHPP/GCE | CV | 1.00 × 10−8–5.00 × 10−3 | 8.00 × 10−9 | Pharmaceuticals | [110] |
MWCNT-SPION/GCE | CV | 1.00 × 10−6–6.00 × 10−6 | 1.18 × 10−7 | Spiked human urine | [111] |
CoEnQ10/Fe3O4NPs/MWCNTs/GCE | DPV | 2.00 × 10−6–2.00 × 10−5 | Peak I 3.20 × 10−8 Peak II 4.13 × 10−7 | Pharmaceuticals | [67] |
CuO@rGO/GCE | CVanodic CVcathodic DPV | 5.00 × 10−8–3.50 × 10−5 5.00 × 10−8–2.90 × 10−5 5.00 × 10−8–2.55 × 10−5 | 6.00 × 10−9 8.00 × 10−9 6.00 × 10−9 | Pharmaceuticals | [52] |
TiO2/rGO/GCE | DPV | 1.00 × 10−11–1.00 × 10−10 | 3.00 × 10−11 | Pharmaceuticals | [66] |
Ni(OH)2NPs-rGONSs/GCE | LSVpeak I LSVpeak I | 6.00 × 10−6–1.00 × 10−5 4.00 × 10−8–1.00 × 10−5 | 4.16 × 10−9 2.34 × 10−9 | Pharmaceuticals; spiked human serum | [27] |
MoSe2/rGO/β-CyD/GCE | DPV | 1.90 × 10−7–3.75 × 10−4 | 2.80 × 10−8 | Human serum; urine; river water; fish | [37] |
PVP capped CoFe2O4@CdSe/GCE | AdSSWV | 1.00 × 10−16–1.00 × 10−7 | 4.55 × 10−17 | Pharmaceuticals; human serum | [112] |
PMel-AuNPs/GCE* | LSV | 8.00 × 10−8–1.50 × 10−5 | 3.00 × 10−8 | Spiked human urine | [45] |
MIPPy/Cu-MOF/MC/GCE | AdSDPV | 8.00 × 10−8–8.50 × 10−5 | 2.80 × 10−10 | Pharmaceuticals; human serum; urine | [68] |
ZrO2@CS/GCE | CV | 1.50 × 10−8–5.47 × 10−4 | 7.50 × 10−9 | Human serum; urine | [113] |
CS/Au/VXC72R/GCE | Amperometry | 5.00 × 10−7–1.00 × 10−5 | 1.10 × 10−7 | Bovine serum | [114] |
BiVO4/SPCE | CV; LSV | 2.00 × 10−7–3.10 × 10−4 | 1.40 × 10−8 | Human serum; urine | [53] |
F64PcZn/TiO2/SPE | PEC | Layer: 1.00 µg/mm2 5.00 × 10−8–2.50 × 10−6 Layer: 4.00 µg/mm2 1.00 × 10−7–1.00 × 10−5 | 7.00 × 10−9 2.80 × 10−8 | Waste water | [115] |
Electroactivated SPBDDE | AdSDPV | 2.00 × 10−12–1.00 × 10−11 2.00 × 10−11–2.00 × 10−10 2.00 × 10−10–2.00 × 10−9 2.00 × 10−9–2.00 × 10−8 | 2.20 × 10−13 | River water; bovine urine (certified reference material). | [36] |
PGE | AdSDPV | 1.99 × 10−8–1.20 × 10−7 | 1.30 × 10−8 | Pharmaceuticals; urine, spiked human serum | [84] |
CPE | SWV AdSSWV | 5.00 × 10−7–5.00 × 10−5 1.00 × 10−7–6.00 × 10−6 | 2.35 × 10−7 1.72 × 10−8 | Pharmaceuticals; spiked human serum | [80] |
DyNW/CPE | AdSSWV | 1.00 × 10−10–1.00 × 10−7 | 5.00 × 10−10 | Pharmaceuticals; spiked human serum | [116] |
HP-β-CyD/CPE | Potentiometry | 3.20 × 10−8–2.20 × 10−4 | 2.30 × 10−8 | Pharmaceuticals; human blood serum | [21] |
CDs@CuFe2O4/CPE | - | 7.00 × 10−8–8.00 × 10−6 | 2.20 × 10−8 | Biological fluids; pharmaceuticals | [88] |
CPE in situ SDS modified CPE | AdSDPVanodic AdSDPVcathodic AdSDPVanodic AdSDPVcathodic | 3.50 × 10−10–5.40 × 10−9 9.00 × 10−11–2.90 × 10−9 3.50 × 10−10–5.40 × 10−9 9.00 × 10−11–1.80 × 10−9 | - | - | [26] |
Mn3O4@SiO2/CPME | SWV | 3.00 × 10−8–3.00 × 10−6 | 1.08 × 10−8 | Spiked human serum; urine | [117] |
NiTAPc-GO/ITO | PEC | 2.50 × 10−8–7.13 × 10−5 | 2.50 × 10−9 | Pharmaceuticals | [118] |
EG-CYP2E1/PVP-AgNPs/PANSA/Au | DPV | 2.00 × 10−6–1.40 × 10−5 | 5.00 × 10−8 | Human serum | [50] |
CYP3A4/CuPPI/Au | DPV | 2.00 × 10−10–1.00 × 10−9 | 1.07 × 10−10 | Spiked synthetic plasma and urine | [86] |
HRP/PPy/Pt | Amperometry/ H2O2 | Chemometrics | 5.00 × 10−6 | Pharmaceuticals; urine | [119] |
PPy-β-CyD/Pt | Amperometry | 2.61 × 10−6–2.52 × 10−5 | 1.69 × 10−6 | Pharmaceuticals; urine | [120] |
Rifamycin SV (RSV) | |||||
HMDE | AdSDPV AdSSWV | Chemometrics | 3.11 × 10−8 1.23 × 10−8 | Pharmaceuticals | [105] |
PGE | AdSDPV | 1.90 × 10−8–4.10 × 10−7 | 6.00 × 10−8 | Pharmaceuticals; urine, spiked human serum | [84] |
MI polyphosphazenes/GCE | DPV | 2.56 × 10−7–6.36 × 10−6 | 3.99 × 10−5 | - | [121] |
CPE in situ CTAC modified CPE | AdSDPVanodic AdSDPVcathodic AdSDPVanodic AdSDPVcathodic | 5.00 × 10−11–1.00 × 10−9 3.00 × 10−11–8.30 × 10−10 5.00 × 10−11–1.00 × 10−9 9.00 × 10−11–6.20 × 10−9 | - | - | [26] |
Analyte | Method | Wavelength (nm) | LR (µg/mL) | LOD (µg/mL) | Sample | Ref. |
---|---|---|---|---|---|---|
RIF | direct water | 474 | 0.82–65.38 | - | Pharmaceuticals; urine, plasma | [138] |
RIF | HCl H3PO4 | 263 259 | 1.50–30.00 | 0.19 0.14 | Pharmaceuticals; urine | [141] |
RIF | PBS pH 7.00 | 470 | 8.00–128.00 | 0.16 | - | [142] |
RIF | direct ethyl acetate | 334 | 2.50–35.00 | 0.83 | Combined dosage forms | [136] |
RIF ISN | AA water | 337 263 | 5.00–35.00 5.00–25.00 | 1.65 0.59 | Combined dosage forms | [125] |
RIF ISN RIF ISN | AA methanol 1D methanol | 338 263 263 290 | 5.00–50.00 | 3.50 2.60 2.30 1.30 | Combined dosage forms | [126] |
RIF PYR | 1D methanol | 365 247 | 4.00–12.00 | 0.87 0.82 | - | [127] |
RIF Piperine | Q-AR methanol | 387 337 | 5.00–40.00 2.00–20.00 | 1.51 0.28 | Combined dosage forms | [128] |
RIF CC-I | Q-AR methanol:water | 370 239 | 2.00–20.00 1.00–24.00 | 0.043 0.014 | In-house combined formulation | [129] |
RIF PYR ISN RIF PYR ISN RIF PYR ISN | DRSZ DDRD HDDR | 358 252 294 350 259 293 292 324 & 345 279 & 286 | 5.00–30.00 5.00–30.00 5.00–30.00 2.00–30.00 2.00–30.00 | 2.14 1.39 1.76 1.76 1.62 1.8 0.64 0.43 1.61 | Pharmaceuticals; urine | [130] |
RIF | Chloranilic acid | 510 | 7.90–39.10 | - | Pharmaceuticals | [143] |
RIF | DDQ TCNQ TCNQ p-chloranil Fe (III) | 584 680 761 560 540 | 5.00–140.00 5.00–120.00 2.00–45.00 15.00–200.00 10.00–240.00 | 2.59 2.09 0.90 3.95 2.30 | Pharmaceuticals | [139] |
RIF | FCR Indirect/Fe(III) + K3[Fe(CN)6] | 760 750 | 1.00–35.00 2.50–50.00 | 0.32 0.32 | Pharmaceuticals; urine | [140] |
RIF | Indirect/NBS + KI | 572 | 0.50–15.50 | - | Pharmaceuticals; urine; plasma | [138] |
RIF ISN | Cu(II) + neocuproine/ PLS regression | 8.00–57.00 5.50–7.00 | 0.06 0.04 | Combined dosage forms; urine | [132] |
Analyte | Sensor | Wavelength (nm) | LR (mol/L) | LOD (mol/L) | Sample | Ref. | |
---|---|---|---|---|---|---|---|
Excitation | Emission | ||||||
RIF | (GSH)-capped CdTe/ZnS QDs | 350 | 577 | 1.00 × 10−6–6.80 × 10−5 | 3.04 × 10−7 | Capsules | [148] |
RIF | CatSt-GSH-capped CdTe/ZnS QDs | 475 | 576 | 4.05 × 10−6–3.65 × 10−5 | 6.00 × 10−8 | Capsules | [149] |
RIF | CDs-HSs | 400 | 480 | 2.40 × 10−6–3.38 × 10−5 | 4.60 × 10−7 | Lake and tap water | [155] |
RIF | N-P-CNDs | 340 | 450 | 1.00 × 10−6–1.00 × 10−4 | 6.00 × 10−8 | Capsules | [97] |
RIF | PEI-capped Cu NCs | 362 | 492 | 0.00–2.00 × 10−5 | 5.00 × 10−9 | Human serum | [151] |
RIF | GSH-Cu NCs | - | 632 | 5.00 × 10−11–1.00 × 10−8 | 1.60 × 10−11 | - | [153] |
RIF | FA capped Cu NCs | 358 | 446 | 5.00 × 10−7–1.00 × 10−4 | 7.30 × 10−8 | Capsules; bovine serum; milk | [152] |
RIF | UCCS NaYF4:Yb, Tm@SiO2 | Laser 980 | 475 | 0.00–2.00 × 10−4 | 8.50 × 10−6 | Human urine | [154] |
RFPT RIF RFD RSV | BSA | 285 | 355 | 8.00 × 10−9–5.00 × 10−5 9.00 × 10−9–5.00 × 10−5 1.60 × 10−8–4.00 × 10−5 1.80 × 10−8–4.00 × 10−5 | 7.60 × 10−10 8.90 × 10−10 1.55 × 10−9 1.77 × 10−9 | Capsules; human urine | [30] |
RFPT RIF RFD RSV | HSA | 1.00 × 10−8–4.00 × 10−5 1.10 × 10−8–4.00 × 10−5 1.90 × 10−8–3.50 × 10−5 1.90 × 10−8–3.50 × 10−5 | 8.50 × 10−10 9.80 × 10−10 1.83 × 10−9 1.89 × 10−9 | ||||
RIF | BSA-Au NCs | 480 | 640 | 6.07 × 10−7–1.00 × 10−3 | 8.50 × 10−8 | Human urine | [54] |
Reagent/Sensor | Method | LR (mol/L) | LOD (mol/L) | Sample | Ref. |
---|---|---|---|---|---|
KHSO5 + CoSO4 | FI-CL | 6.08 × 10−8–1.22 × 10−6 | 8.50 × 10−9 | Capsules; eye drops | [49] |
NBS in NaOH + NH3 | CF-CL | 1.22 × 10−8–1.22 × 10− | 6.07 × 10−9 | Combined pharmaceuticals | [81] |
B,N-doped CDs Ce(SO4)2 + Na2SO3 | FI-CL | 2.00 × 10−10–1.5 × 10−7 | 5.00× 10−11 | Spiked plasma; spiked urine | [44] |
K2S2O8/Pt coil electrode | FI-ECL | 1.00 × 10−7–4.00 × 10−5 | 3.90 × 10−8 | Pharmaceuticals; urine | [40] |
Luminol/Pt flake electrode | ECL | 1.00 × 10−8–4.00 × 10−6 | 8.00 × 10−9 | Pharmaceuticals; urine | [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, H.; David, I.G.; Jinga, M.L.; Popa, D.E.; Buleandra, M.; Iorgulescu, E.E.; Ciobanu, A.M. State of the Art on Developments of (Bio)Sensors and Analytical Methods for Rifamycin Antibiotics Determination. Sensors 2023, 23, 976. https://doi.org/10.3390/s23020976
Noor H, David IG, Jinga ML, Popa DE, Buleandra M, Iorgulescu EE, Ciobanu AM. State of the Art on Developments of (Bio)Sensors and Analytical Methods for Rifamycin Antibiotics Determination. Sensors. 2023; 23(2):976. https://doi.org/10.3390/s23020976
Chicago/Turabian StyleNoor, Hassan, Iulia Gabriela David, Maria Lorena Jinga, Dana Elena Popa, Mihaela Buleandra, Emilia Elena Iorgulescu, and Adela Magdalena Ciobanu. 2023. "State of the Art on Developments of (Bio)Sensors and Analytical Methods for Rifamycin Antibiotics Determination" Sensors 23, no. 2: 976. https://doi.org/10.3390/s23020976
APA StyleNoor, H., David, I. G., Jinga, M. L., Popa, D. E., Buleandra, M., Iorgulescu, E. E., & Ciobanu, A. M. (2023). State of the Art on Developments of (Bio)Sensors and Analytical Methods for Rifamycin Antibiotics Determination. Sensors, 23(2), 976. https://doi.org/10.3390/s23020976