Real-Time Anomaly Detection for Water Quality Sensor Monitoring Based on Multivariate Deep Learning Technique
Abstract
:1. Introduction
1.1. Water Quality Monitoring
1.2. Water Quality Anomaly Detection
1.3. Industry 4.0 for 3D-Printed Water Quality Sensor
2. Related Work
3. Materials and Methodology
3.1. Approach Using Multiple Convolutional Networks
3.2. Long Short-Term Memory (LSTM) Model
- The current input.
- The short-term memory is often referred to as the hidden state.
- The long-term memory is commonly referred to as the cell state.
3.3. The Proposal MCN-LSTM Technique
4. Results and Discussions
4.1. Dataset Description
4.2. Experimental and Discussion
4.3. Comparison with Other Approaches
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Yu, W.; Rahayu, W.; Dillon, T. An Evaluative Study on IoT ecosystem for Smart Predictive Maintenance (IoT-SPM) in Manufacturing: Multi-view Requirements and Data Quality. IEEE Internet Things J. 2023, 10, 11160–11184. [Google Scholar] [CrossRef]
- Carr, G.M.; Neary, J.P. Water Quality for Ecosystem and Human Health; United Nations Development Programme, Global Environment Monitoring System/Water Programme: New York, NY, USA, 2008. [Google Scholar]
- Ghernaout, D.; Aichouni, M.; Alghamdi, A. Applying big data in water treatment industry: A new era of advance. Int. J. Adv. Appl. Sci. 2018, 5, 89–97. [Google Scholar] [CrossRef]
- Altenburger, R.; Brack, W.; Burgess, R.M.; Busch, W.; Escher, B.I.; Focks, A.; Krauss, M. Future water quality monitoring: Improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environ. Sci. Eur. 2019, 31, 1–17. [Google Scholar] [CrossRef]
- Li, H.; Gu, J.; Hanif, A.; Dhanasekar, A.; Carlson, K. Quantitative decision-making for a groundwater monitoring and subsurface contamination early warning network. Sci. Total Environ. 2019, 683, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, W.; Burgess, J.E.; Stuetz, R.M. On-line monitoring of wastewater quality: A review. J. Chem. Technol. Biotechnol. 2001, 76, 337–348. [Google Scholar] [CrossRef]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Ertoz, L.; Lazarevic, A.; Eilertson, E.; Tan, P.N.; Dokas, P.; Kumar, V.; Srivastava, J. Protecting against cyber threats in networked information systems. Battlespace Digit. Netw.-Centric Syst. III 2003, 5101, 51–56. [Google Scholar]
- Wong, Y.J.; Nakayama, R.; Shimizu, Y.; Kamiya, A.; Shen, S.; Rashid IZ, M.; Sulaiman NM, N. Toward industrial revolution 4.0: Development, validation, and application of 3D-printed IoT-based water quality monitoring system. J. Clean. Prod. 2021, 324, 129230. [Google Scholar] [CrossRef]
- Tang, J.; Chen, Z.; Fu AW, C.; Cheung, D.W. Enhancing effectiveness of outlier detections for low density patterns. In Proceedings of the Advances in Knowledge Discovery and Data Mining: 6th Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, 6–8 May 2002; Springer: Berlin/Heidelberg, Germany; pp. 535–548. [Google Scholar]
- Kriegel, H.P.; Kröger, P.; Schubert, E.; Zimek, A. LoOP: Local outlier probabilities. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, Hong Kong, China, 2–6 November 2009; pp. 1649–1652. [Google Scholar]
- Jin, W.; Tung, A.K.; Han, J.; Wang, W. Ranking outliers using symmetric neighborhood relationship. In Proceedings of the Advances in Knowledge Discovery and Data Mining: 10th Pacific-Asia Conference, PAKDD 2006, Singapore, 9–12 April 2006; Springer: Berlin/Heidelberg, Germany; pp. 577–593. [Google Scholar]
- Kamaludin, K.H.; Ismail, W. Water quality monitoring with internet of things (iot). In Proceedings of the 2017 IEEE Conference on Systems, Process and Control (ICSPC), Malacca, Malaysia, 15–17 December 2017; pp. 18–23. [Google Scholar] [CrossRef]
- Yang, X.; Liu, F. Application of Wireless Sensor Network in Water Quality Monitoring. In Proceedings of the IEEE CSE and EUC Conference, Guangzhou, China, 21–24 July 2017. [Google Scholar]
- Orfei, F.; Mezzetti, C.B.; Cottone, F. Vibrations powered lora sensor: An electromechanical energy harvester working on a real bridge. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Jalal, D.; Ezzedine, T. Towards a water quality monitoring system based on wireless sensor networks. In Proceedings of the 2017 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC), Gafsa, Tunisia, 20–22 October 2017; pp. 38–41. [Google Scholar] [CrossRef]
- Siregar, B.; Menen, K.; Efendi, S.; Andayani, U.; Fahmi, F. Monitoring quality standard of waste water using wireless sensor network technology for smart environment. In Proceedings of the 2017 International Conference on ICT for Smart Society (ICISS), Tangerang, Indonesia, 18–19 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Salemdawod, A.; Aslan, Z. Water and air quality in modern farms using neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, S.; Xu, L.; Li, Q.; Zhao, X.; Li, D. Fault diagnosis of water quality monitoring devices based on multi-class support vector machines and rule-based decision trees. IEEE Access 2018, 6, 22184–22195. [Google Scholar] [CrossRef]
- Ladjal, M.; Bouamar, M.; Djerioui, M.; Brik, Y. Performance evaluation of ann and svm multi-class models for intelligent water quality classification using dempster-shafer theory. In Proceedings of the 2016 International Conference on Electrical and Information Technologies (ICEIT), Tangiers, Morocco, 4–7 May 2016; pp. 191–196. [Google Scholar] [CrossRef]
- Kravchik, M.; Shabtai, A. Detecting Cyber Attacks in Industrial Control Systems Using Convolutional Neural Networks. In Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy (CPS-SPC@CCS 2018), Toronto, ON, Canada, 19 October 2018; Lie, D., Mannan, M., Eds.; ACM: New York, NY, USA, 2018; pp. 72–83. [Google Scholar]
- Xie, X.; Wang, B.; Wan, T.; Tang, W. Multivariate Abnormal Detection for Industrial Control Systems Using 1D CNN and GRU. IEEE Access 2020, 8, 88348–88359. [Google Scholar] [CrossRef]
- Khan, A.A.; Beg, O.A.; Alamaniotis, M.; Ahmed, S. Intelligent anomaly identification in cyber-physical inverter-based systems. Electr. Power Syst. Res. 2021, 193, 107024. [Google Scholar] [CrossRef]
- Li, D.; Chen, D.; Goh, J.; Ng, S. Anomaly Detection with Generative Adversarial Networks for Multivariate Time Series. arXiv 2018, arXiv:1809.04758. [Google Scholar]
- Wu, Y.L.; Shuai, H.H.; Tam, Z.R.; Chiu, H.Y. Gradient normalization for generative adversarial networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 6373–6382. [Google Scholar]
- Lamshöft, K.; Neubert, T.; Krätzer, C.; Vielhauer, C.; Dittmann, J. Information hiding in cyber physical systems: Challenges for embedding, retrieval and detection using sensor data of the SWAT dataset. In Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security, Virtual, 22–25 June 2021; pp. 113–124. [Google Scholar]
- Wu, J.; Yao, L.; Liu, B.; Ding, Z.; Zhang, L. Combining OC-SVMs with LSTM for detecting anomalies in telemetry data with irregular intervals. IEEE Access 2020, 8, 106648–106659. [Google Scholar] [CrossRef]
- Di Mattia, F.; Galeone, P.; De Simoni, M.; Ghelfi, E. A survey on gans for anomaly detection. arXiv 2019, arXiv:1906.11632. [Google Scholar]
- Geiger, A.; Liu, D.; Alnegheimish, S.; Cuesta-Infante, A.; Veeramachaneni, K. Tadgan: Time series anomaly detection using generative adversarial networks. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 33–43. [Google Scholar]
- Li, D.; Chen, D.; Jin, B.; Shi, L.; Goh, J.; Ng, S.K. MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks. In Proceedings of the International Conference on Artificial Neural Networks, Munich, Germany, 17–19 September 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 703–716. [Google Scholar]
- Senapati, D.; Narendra, M.; Kumar, A.; Rath, S. Long Short-Term Memory (LSTM) Layers as a Proposed Learning Algorithm for Rainfall Prediction. In Proceedings of the Information and Communication Technology for Competitive Strategies (ICTCS 2021) Intelligent Strategies for ICT, Jaipur, India, 9–10 October 2022; Springer Nature: Singapore, 2022; pp. 243–252. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Chen, S.; Cheng, Z.; Zhang, L.; Zheng, Y. SnipeDet: Attention-guided pyramidal prediction kernels for generic object detection. Pattern Recognit. Lett. 2021, 152, 302–310. [Google Scholar] [CrossRef]
- Perelman, L.; Ostfeld, A. Water-distribution systems simplifications through clustering. J. Water Resour. Plan. Manag. 2012, 138, 218–229. [Google Scholar] [CrossRef]
- Wong, Y.J.; Shimizu, Y.; Kamiya, A.; Maneechot, L.; Bharambe, K.P.; Fong, C.S.; Nik Sulaiman, N.M. Application of artificial intelligence methods for monsoonal river classification in Selangor river basin, Malaysia. Environ. Monit. Assess. 2021, 193, 438. [Google Scholar] [CrossRef] [PubMed]
Date | Time | SC (μs) | Turb (FNU) | DO (mg/L) |
---|---|---|---|---|
27 January 2017 | 00:00:00 | 467.0 | 8.3 | 10.4 |
00:15:00 | 467.0 | NaN | 10.4 | |
00:30:00 | 467.0 | 7.8 | 10.4 | |
00:45:00 | 467.0 | 8.0 | 10.4 | |
01:00:00 | 468.0 | 7.5 | 10.4 | |
01:15:00 | 468.0 | 8.6 | 10.4 | |
01:30:00 | 469.0 | 8.7 | 10.4 | |
01:45:00 | 468.0 | NaN | 10.4 | |
02:00:00 | 469.0 | 7.8 | 10.4 | |
02:15:00 | 469.0 | 8.5 | 10.4 | |
02:30:00 | 469.0 | NaN | 10.4 | |
02:45:00 | 469.0 | 11.5 | 10.4 | |
03:00:00 | 470.0 | 11.2 | 10.4 | |
03:15:00 | 470.0 | 9.1 | 10.4 | |
03:30:00 | 470.0 | 6.9 | 10.4 | |
03:45:00 | 470.0 | 7.4 | 10.4 | |
04:00:00 | 470.0 | 7.6 | 10.4 | |
04:15:00 | 471.0 | NaN | 10.4 | |
04:30:00 | 471.0 | NaN | 10.4 | |
04:45:00 | 471.0 | 7.7 | 10.4 | |
05:00:00 | 471.0 | 9.8 | 10.4 | |
05:15:00 | 472.0 | NaN | 10.5 | |
05:30:00 | 472.0 | 6.3 | 10.5 | |
05:45:00 | 472.0 | 7.4 | 10.5 | |
06:00:00 | 473.0 | NaN | 10.5 | |
06:15:00 | 472.0 | 8.0 | 10.5 | |
06:30:00 | 473.0 | 8.8 | 10.5 | |
06:45:00 | 473.0 | NaN | 10.5 | |
07:00:00 | 473.0 | 6.3 | 10.5 | |
07:15:00 | 474.0 | 6.1 | 10.5 |
Techniques | F1 | FPR | TPR |
---|---|---|---|
SVM | 0.82 | 0.99 | 0.40 |
RNN | 084 | 1.0 | 0.12 |
LSTM | 0.88 | 0.04 | 0.86 |
CNN | 0.92 | 0.93 | 0.49 |
ANN | 0.87 | 0.11 | 0.85 |
MCN-LSTM | 0.93 | 0.20 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Shafeiy, E.; Alsabaan, M.; Ibrahem, M.I.; Elwahsh, H. Real-Time Anomaly Detection for Water Quality Sensor Monitoring Based on Multivariate Deep Learning Technique. Sensors 2023, 23, 8613. https://doi.org/10.3390/s23208613
El-Shafeiy E, Alsabaan M, Ibrahem MI, Elwahsh H. Real-Time Anomaly Detection for Water Quality Sensor Monitoring Based on Multivariate Deep Learning Technique. Sensors. 2023; 23(20):8613. https://doi.org/10.3390/s23208613
Chicago/Turabian StyleEl-Shafeiy, Engy, Maazen Alsabaan, Mohamed I. Ibrahem, and Haitham Elwahsh. 2023. "Real-Time Anomaly Detection for Water Quality Sensor Monitoring Based on Multivariate Deep Learning Technique" Sensors 23, no. 20: 8613. https://doi.org/10.3390/s23208613
APA StyleEl-Shafeiy, E., Alsabaan, M., Ibrahem, M. I., & Elwahsh, H. (2023). Real-Time Anomaly Detection for Water Quality Sensor Monitoring Based on Multivariate Deep Learning Technique. Sensors, 23(20), 8613. https://doi.org/10.3390/s23208613