Clinical Static Balance Assessment: A Narrative Review of Traditional and IMU-Based Posturography in Older Adults and Individuals with Incomplete Spinal Cord Injury
Abstract
:1. Introduction
2. Quantification of Standing Balance
3. Posturography
3.1. Posturography Using In-Lab Equipment
3.2. IMU-Based Posturography
4. Balance Assessment in Older Adults
5. Balance Assessment in Individuals with iSCI
6. Existing Gaps and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burns, E.R.; Stevens, J.A.; Lee, R. The direct costs of fatal and non-fatal falls among older adults—United States. J. Saf. Res. 2016, 58, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Web-Based Injury Statistics Query and Reporting System (WISQARS); National Center for Injury Prevention and Control, Centers for Disease Control and Prevention: Georgia, GA, USA, 2023.
- Ganz, D.A.; Bao, Y.; Shekelle, P.G.; Rubenstein, L.Z. Will my patient fall? JAMA 2007, 297, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Hubble, R.P.; Naughton, G.A.; Silburn, P.A.; Cole, M.H. Wearable sensor use for assessing standing balance and walking stability in people with Parkinson’s disease: A systematic review. PLoS ONE 2015, 10, e0123705. [Google Scholar] [CrossRef]
- Noohu, M.M.; Dey, A.B.; Hussain, M.E. Relevance of balance measurement tools and balance training for fall prevention in older adults. J. Clin. Gerontol. Geriatr. 2014, 5, 31–35. [Google Scholar] [CrossRef]
- Zijlstra, W.; Aminian, K. Mobility assessment in older people: New possibilities and challenges. Eur. J. Ageing 2007, 4, 3–12. [Google Scholar] [CrossRef]
- Stevens, J.A.; Mack, K.A.; Paulozzi, L.J.; Ballesteros, M.F. Self-reported falls and fall-related injuries among persons aged ≥ 65 years–United States, 2006. J. Saf. Res. 2008, 39, 345–349. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, Y.; Wang, H.; Sun, T.-L.; Murphy, T.E.; Tsui, K.-L. Assessing elderly’s functional balance and mobility via analyzing data from waist-mounted tri-axial wearable accelerometers in timed up and go tests. BMC Med. Inform. Decis. Mak. 2021, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk factors for falls among older adults: A review of the literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef]
- Arora, T.; Oates, A.; Lynd, K.; Musselman, K.E. Current state of balance assessment during transferring, sitting, standing and walking activities for the spinal cord injured population: A systematic review. J. Spinal Cord Med. 2020, 43, 10–23. [Google Scholar] [CrossRef]
- Brotherton, S.S.; Krause, J.S.; Nietert, P.J. Falls in individuals with incomplete spinal cord injury. Spinal Cord 2007, 45, 37–40. [Google Scholar] [CrossRef]
- Khan, A.; Pujol, C.; Laylor, M.; Unic, N.; Pakosh, M.; Dawe, J.; Musselman, K.E. Falls after spinal cord injury: A systematic review and meta-analysis of incidence proportion and contributing factors. Spinal Cord 2019, 57, 526–539. [Google Scholar] [CrossRef] [PubMed]
- Amatachaya, S.; Wannapakhe, J.; Arrayawichanon, P.; Siritarathiwat, W.; Wattanapun, P. Functional abilities, P., incidences of complications and falls of patients with spinal cord injury 6 months after discharge. Spinal Cord 2011, 49, 520–524. [Google Scholar] [CrossRef]
- Brotherton, S.S.; Krause, J.S.; Nietert, P.J. A pilot study of factors associated with falls in individuals with incomplete spinal cord injury. J. Spinal Cord Med. 2007, 30, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Shah, G.; Oates, A.R.; Arora, T.; Lanovaz, J.L.; Musselman, K.E. Measuring balance confidence after spinal cord injury: The reliability and validity of the Activities-specific Balance Confidence Scale. J. Spinal Cord Med. 2017, 40, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Lemay, J.; Nadeau, S. Standing balance assessment in ASIA D paraplegic and tetraplegic participants: Concurrent validity of the Berg Balance Scale. Spinal Cord 2010, 48, 245–250. [Google Scholar] [CrossRef]
- Lemay, J.-F.; Gagnon, D.; Duclos, C.; Grangeon, M.; Gauthier, C.; Nadeau, S. Influence of visual inputs on quasi-static standing postural steadiness in individuals with spinal cord injury. Gait Posture 2013, 38, 357–360. [Google Scholar] [CrossRef]
- Lemay, J.-F.; Gagnon, D.H.; Nadeau, S.; Grangeon, M.; Gauthier, C.; Duclos, C. Center-of-pressure total trajectory length is a complementary measure to maximum excursion to better differentiate multidirectional standing limits of stability between individuals with incomplete spinal cord injury and able-bodied individuals. J. Neuroeng. Rehabil. 2014, 11, 1–11. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Alekhina, M.I.; Masani, K.; Vette, A.H.; Obata, H.; Popovic, M.R.; Nakazawa, K. Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal Cord 2010, 48, 886–893. [Google Scholar] [CrossRef]
- Musselman, K.E.; Lemay, J.-F.; Walden, K.; Harris, A.; Gagnon, D.H.; Verrier, M.C. The standing and walking assessment tool for individuals with spinal cord injury: A qualitative study of validity and clinical use. J. Spinal Cord Med. 2019, 42, 108–118. [Google Scholar] [CrossRef]
- Chan, K.; Unger, J.; Lee, J.W.; Johnston, G.; Constand, M.; Masani, K.; Musselman, K.E. Quantifying balance control after spinal cord injury: Reliability and validity of the mini-BESTest. J. Spinal Cord Med. 2019, 42, 141–148. [Google Scholar] [CrossRef]
- Lemay, J.-F.; Nadeau, S. Potential of the smart balance master system to assess standing balance in people with incomplete spinal cord injury. J. Rehabil. Med. 2013, 45, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.; King, L.; Mancini, M. Role of body-worn movement monitor technology for balance and gait rehabilitation. Phys. Ther. 2015, 95, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Merlo, A.; Zemp, D.; Zanda, E.; Rocchi, S.; Meroni, F.; Tettamanti, M.; Recchia, A.; Lucca, U.; Quadri, P. Postural stability and history of falls in cognitively able older adults: The Canton Ticino study. Gait Posture 2012, 36, 662–666. [Google Scholar] [CrossRef]
- Rocchi, L.; Chiari, L.; Cappello, A.; Horak, F.B. Identification of distinct characteristics of postural sway in Parkinson’s disease: A feature selection procedure based on principal component analysis. Neurosci. Lett. 2006, 394, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Mancini, M. Objective biomarkers of balance and gait for Parkinson’s disease using body-worn sensors. Mov. Disord. 2013, 28, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Marinho-Buzelli, A.R.; Rouhani, H.; Craven, B.C.; Masani, K.; Barela, J.A.; Popovic, M.R.; Verrier, M.C. Effects of water immersion on quasi-static standing exploring center of pressure sway and trunk acceleration: A case series after incomplete spinal cord injury. Spinal Cord Ser. Cases 2019, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- United Nations. World Population Ageing 2019: Highlights. Available online: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf (accessed on 1 July 2023).
- National Spinal Cord Injury Statistical Center. Spinal Cord Injury Facts and Figures at a Glance. 2019. Available online: https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%202019%20-%20Final.pdf (accessed on 1 July 2023).
- Aramaki, Y.; Nozaki, D.; Masani, K.; Sato, T.; Nakazawa, K.; Yano, H. Reciprocal angular acceleration of the ankle and hip joints during quiet standing in humans. Exp. Brain Res. 2001, 136, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Masani, K.; Vette, A.H.; Popovic, M.R. Controlling balance during quiet standing: Proportional and derivative controller generates preceding motor command to body sway position observed in experiments. Gait Posture 2006, 23, 164–172. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Scholz, J.P.; Schoner, G.; Jeka, J.J.; Kiemel, T. Control and estimation of posture during quiet stance depends on multijoint coordination. J. Neurophysiol. 2007, 97, 3024–3035. [Google Scholar] [CrossRef]
- Collins, J.J.; De Luca, C.J. Open-loop and closed-loop control of posture: A random-walk analysis of center-of-pressure trajectories. Exp. Brain Res. 1993, 95, 308–318. [Google Scholar] [CrossRef]
- Prieto, T.E.; Myklebust, J.B.; Hoffmann, R.G.; Lovett, E.G.; Myklebust, B.M. Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 1996, 43, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Salarian, A.; Carlson-Kuhta, P.; Zampieri, C.; King, L.; Chiari, L.; Horak, F.B. ISway: A sensitive, valid and reliable measure of postural control. J. Neuroeng. Rehabil. 2012, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Masani, K.; Vette, A.H.; Abe, M.O.; Nakazawa, K.; Popovic, M.R. Smaller sway size during quiet standing is associated with longer preceding time of motor command to body sway. Gait Posture 2011, 33, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Yamamoto, S.-I.; Miyoshi, T.; Nakazawa, K.; Masani, K.; Nozaki, D. Anti-phase action between the angular accelerations of trunk and leg is reduced in the elderly. Gait Posture 2014, 40, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Richmond, S.B.; Fling, B.W.; Lee, H.; Peterson, D.S. The assessment of center of mass and center of pressure during quiet stance: Current applications and future directions. J. Biomech. 2021, 123, 110485. [Google Scholar] [CrossRef]
- Popović, M.R.; Pappas, I.P.; Nakazawa, K.; Keller, T.; Morari, M.; Dietz, V. Stability criterion for controlling standing in able-bodied subjects. J. Biomech. 2000, 33, 1359–1368. [Google Scholar] [CrossRef]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Review of fall risk assessment in geriatric populations using inertial sensors. J. Neuroeng. Rehabil. 2013, 10, 1–12. [Google Scholar] [CrossRef]
- Nazarahari, M.; Rouhani, H. Detection of daily postures and walking modalities using a single chest-mounted tri-axial accelerometer. Med. Eng. Phys. 2018, 57, 75–81. [Google Scholar] [CrossRef]
- Noamani, A.; Nazarahari, M.; Lewicke, J.; Vette, A.H.; Rouhani, H. Validity of using wearable inertial sensors for assessing the dynamics of standing balance. Med. Eng. Phys. 2020, 77, 53–59. [Google Scholar] [CrossRef]
- Tyson, S.; Connell, L. How to measure balance in clinical practice. A systematic review of the psychometrics and clinical utility of measures of balance activity for neurological conditions. Clin. Rehabil. 2009, 23, 824–840. [Google Scholar] [CrossRef] [PubMed]
- Kiemel, T.; Zhang, Y.; Jeka, J.J. Identification of neural feedback for upright stance in humans: Stabilization rather than sway minimization. J. Neurosci. 2011, 31, 15144–15153. [Google Scholar] [CrossRef]
- Kiemel, T.; Elahi, A.J.; Jeka, J.J. Identification of the plant for upright stance in humans: Multiple movement patterns from a single neural strategy. J. Neurophysiol. 2008, 100, 3394–3406. [Google Scholar] [CrossRef] [PubMed]
- Jeka, J.; Kiemel, T.; Creath, R.; Horak, F.; Peterka, R. Controlling human upright posture: Velocity information is more accurate than position or acceleration. J. Neurophysiol. 2004, 92, 2368–2379. [Google Scholar] [CrossRef] [PubMed]
- Vette, A.H.; Masani, K.; Sin, V.; Popovic, M.R. Posturographic measures in healthy young adults during quiet sitting in comparison with quiet standing. Med. Eng. Phys. 2010, 32, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Caron, O.; Faure, B.; Brenière, Y. Estimating the centre of gravity of the body on the basis of the centre of pressure in standing posture. J. Biomech. 1997, 30, 1169–1171. [Google Scholar] [CrossRef]
- Collins, J.; De Luca, C. The effects of visual input on open-loop and closed-loop postural control mechanisms. Exp. Brain Res. 1995, 103, 151–163. [Google Scholar] [CrossRef]
- Collins, J.; De Luca, C.; Burrows, A.; Lipsitz, L. Age-related changes in open-loop and closed-loop postural control mechanisms. Exp. Brain Res. 1995, 104, 480–492. [Google Scholar] [CrossRef]
- Maurer, C.; Peterka, R.J. A new interpretation of spontaneous sway measures based on a simple model of human postural control. J. Neurophysiol. 2005, 93, 189–200. [Google Scholar] [CrossRef]
- Van der Kooij, H.; van Asseldonk, E.; van der Helm, F.C. Comparison of different methods to identify and quantify balance control. J. Neurosci. Methods 2005, 145, 175–203. [Google Scholar] [CrossRef]
- Amoud, H.; Abadi, M.; Hewson, D.J.; Michel-Pellegrino, V.; Doussot, M.; Duchêne, J. Fractal time series analysis of postural stability in elderly and control subjects. J. Neuroeng. Rehabil. 2007, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, L.; Castaldo, R.; Pecchia, L. On the use of approximate entropy and sample entropy with centre of pressure time-series. J. Neuroeng. Rehabil. 2018, 15, 116. [Google Scholar] [CrossRef]
- Hansen, C.; Wei, Q.; Shieh, J.-S.; Fourcade, P.; Isableu, B.; Majed, L. Sample entropy, univariate, and multivariate multi-scale entropy in comparison with classical postural sway parameters in young healthy adults. Front. Hum. Neurosci. 2017, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, A. Analysis of postural sway using entropy measures of signal complexity. Med. Biol. Eng. Comput. 2000, 38, 617–624. [Google Scholar] [CrossRef]
- Acharya, U.; Goh, S.; Iijima, K.; Sekine, M.; Tamura, T. Analysis of body responses to an accelerating platform by the largest-Lyapunov-exponent method. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2009, 223, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Grangeon, M.; Gagnon, D.; Duclos, C.; Gauthier, C.; Larivière, C.; Gourdou, P. Characterizing postural stability in a quasi-static sitting position among individuals with sensorimotor impairments following spinal cord injury. J. Bioeng. Biomed. Sci. 2013, 3, 2. [Google Scholar]
- Genthon, N.; Vuillerme, N.; Monnet, J.; Petit, C.; Rougier, P. Biomechanical assessment of the sitting posture maintenance in patients with stroke. Clin. Biomech. 2007, 22, 1024–1029. [Google Scholar] [CrossRef]
- Hufschmidt, A.; Dichgans, J.; Mauritz, K.-H.; Hufschmidt, M. Some methods and parameters of body sway quantification and their neurological applications. Arch. Psychiatr. Nervenkrankh. 1980, 228, 135–150. [Google Scholar] [CrossRef]
- Geurts, A.C.; Nienhuis, B.; Mulder, T.W. Intrasubject variability of selected force-platform parameters in the quantification of postural control. Arch. Phys. Med. Rehabil. 1993, 74, 1144–1150. [Google Scholar] [CrossRef]
- Norrlin, S.; Karlsson, A.; Ahlsten, G.; Lanshammar, H.; Hans, C.; Dahl, M. Force measurements of postural sway and rapid arm lift in seated children with and without MMC. Clin. Biomech. 2002, 17, 197–202. [Google Scholar] [CrossRef]
- Demura, S.; Kitabayashi, T.; Noda, M. Power spectrum characteristics of sway position and velocity of the center of pressure during static upright posture for healthy people. Percept. Mot. Ski. 2008, 106, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.E.; Murray, A.; Elliott, C.; Birchall, J.P. Comparison of body sway analysis techniques: Assessment with subjects standing on a stable surface. Acta Oto-Laryngol. 1994, 114, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Elliott, C.; FitzGerald, J.E.; Murray, A. Postural stability of normal subjects measured by sway magnetometry: Pathlength and area for the age range 15 to 64 years. Physiol. Meas. 1998, 19, 103. [Google Scholar] [CrossRef] [PubMed]
- Cornilleau-Pérès, V.; Shabana, N.; Droulez, J.; Goh, J.; Lee, G.S.; Chew, P.T. Measurement of the visual contribution to postural steadiness from the COP movement: Methodology and reliability. Gait Posture 2005, 22, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, L.; Chiari, L.; Cappello, A. Feature selection of stabilometric parameters based on principal component analysis. Med. Biol. Eng. Comput. 2004, 42, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A.; Patla, A.E.; Prince, F.; Ishac, M.; Gielo-Perczak, K. Stiffness control of balance in quiet standing. J. Neurophysiol. 1998, 80, 1211–1221. [Google Scholar] [CrossRef]
- Gage, W.H.; Winter, D.A.; Frank, J.S.; Adkin, A.L. Kinematic and kinetic validity of the inverted pendulum model in quiet standing. Gait Posture 2004, 19, 124–132. [Google Scholar] [CrossRef]
- Fok, K.L.; Lee, J.; Vette, A.H.; Masani, K. Kinematic error magnitude in the single-mass inverted pendulum model of human standing posture. Gait Posture 2018, 63, 23–26. [Google Scholar] [CrossRef]
- Fitzpatrick, R.; Rogers, D.K.; McCloskey, D. Stable human standing with lower-limb muscle afferents providing the only sensory input. J. Physiol. 1994, 480, 395–403. [Google Scholar] [CrossRef]
- Alexandrov, A.V.; Frolov, A.A.; Horak, F.B.; Carlson-Kuhta, P.; Park, S. Feedback equilibrium control during human standing. Biol. Cybern. 2005, 93, 309–322. [Google Scholar] [CrossRef]
- Creath, R.; Kiemel, T.; Horak, F.; Peterka, R.; Jeka, J. A unified view of quiet and perturbed stance: Simultaneous co-existing excitable modes. Neurosci. Lett. 2005, 377, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kiemel, T.; Jeka, J. The influence of sensory information on two-component coordination during quiet stance. Gait Posture 2007, 26, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Sasagawa, S.; Ushiyama, J.; Kouzaki, M.; Kanehisa, H. Effect of the hip motion on the body kinematics in the sagittal plane during human quiet standing. Neurosci. Lett. 2009, 450, 27–31. [Google Scholar] [CrossRef]
- Hay, D.C.; Wachowiak, M.P. Analysis of free moment and center of pressure frequency components during quiet standing using magnitude squared coherence. Hum. Mov. Sci. 2017, 54, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Saffer, M.; Kiemel, T.; Jeka, J. Coherence analysis of muscle activity during quiet stance. Exp. Brain Res. 2008, 185, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Dibble, L.E.; Lange, M. Predicting falls in individuals with Parkinson disease: A reconsideration of clinical balance measures. J. Neurol. Phys. Ther. 2006, 30, 60–67. [Google Scholar] [CrossRef]
- Adlerton, A.K.; Moritz, U.; Moe-Nilssen, R. Forceplate and accelerometer measures for evaluating the effect of muscle fatigue on postural control during one-legged stance. Physiother. Res. Int. 2003, 8, 187–199. [Google Scholar] [CrossRef]
- Whitney, S.L.; Roche, J.L.; Marchetti, G.F.; Lin, C.C.; Steed, D.P.; Furman, G.R.; Musolino, M.C.; Redfern, M.S. A comparison of accelerometry and center of pressure measures during computerized dynamic posturography: A measure of balance. Gait Posture 2011, 33, 594–599. [Google Scholar] [CrossRef]
- Mayagoitia, R.E.; Lötters, J.C.; Veltink, P.H.; Hermens, H. Standing balance evaluation using a triaxial accelerometer. Gait Posture 2002, 16, 55–59. [Google Scholar] [CrossRef]
- Najafi, B.; Horn, D.; Marclay, S.; Crews, R.T.; Wu, S.; Wrobel, J.S. Assessing postural control and postural control strategy in diabetes patients using innovative and wearable technology. Sage J. 2010, 4, 780–791. [Google Scholar] [CrossRef]
- Mancini, M.; Horak, F.B.; Zampieri, C.; Carlson-Kuhta, P.; Nutt, J.G.; Chiari, L. Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Park. Relat. Disord. 2011, 17, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Alberts, J.L.; Hirsch, J.R.; Koop, M.M.; Schindler, D.D.; Kana, D.E.; Linder, S.M.; Campbell, S.; Thota, A.K. Using accelerometer and gyroscopic measures to quantify postural stability. J. Athl. Train. 2015, 50, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Heebner, N.R.; Akins, J.S.; Lephart, S.M.; Sell, T.C. Reliability and validity of an accelerometry based measure of static and dynamic postural stability in healthy and active individuals. Gait Posture 2015, 41, 535–539. [Google Scholar] [CrossRef]
- Ekvall Hansson, E.; Tornberg, Å. Coherence and reliability of a wearable inertial measurement unit for measuring postural sway. BMC Res. Notes 2019, 12, 201. [Google Scholar] [CrossRef] [PubMed]
- Möller, U.O.; Fänge, A.M.; Hansson, E.E. Modern technology against falls–A description of the MoTFall project. Health Inform. J. 2021, 27, 14604582211011514. [Google Scholar] [CrossRef]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable inertial sensors to assess standing balance: A systematic review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef]
- Bonora, G.; Mancini, M.; Carpinella, I.; Chiari, L.; Ferrarin, M.; Nutt, J.G.; Horak, F.B. Investigation of anticipatory postural adjustments during one-leg stance using inertial sensors: Evidence from subjects with parkinsonism. Front. Neurol. 2017, 8, 361. [Google Scholar] [CrossRef]
- Baston, C.; Mancini, M.; Rocchi, L.; Horak, F. Effects of Levodopa on Postural Strategies in Parkinson’s disease. Gait Posture 2016, 46, 26–29. [Google Scholar] [CrossRef]
- Hasegawa, N.; Maas, K.C.; Shah, V.V.; Carlson-Kuhta, P.; Nutt, J.G.; Horak, F.B.; Asaka, T.; Mancini, M. Functional limits of stability and standing balance in people with Parkinson’s disease with and without freezing of gait using wearable sensors. Gait Posture 2021, 87, 123–129. [Google Scholar] [CrossRef]
- Albán-Cadena, A.C.; Villalba-Meneses, F.; Pila-Varela, K.O.; Moreno-Calvo, A.; Villalba-Meneses, C.P.; Almeida-Galárraga, D.A. Wearable sensors in the diagnosis and study of Parkinson’s disease symptoms: A systematic review. J. Med. Eng. Technol. 2021, 45, 532–545. [Google Scholar] [CrossRef]
- Huisinga, J.M.; George, R.J.S.; Spain, R.; Overs, S.; Horak, F.B. Postural response latencies are related to balance control during standing and walking in patients with multiple sclerosis. Arch. Phys. Med. Rehabil. 2014, 95, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- Huisinga, J.; Mancini, M.; Veys, C.; Spain, R.; Horak, F. Coherence analysis of trunk and leg acceleration reveals altered postural sway strategy during standing in persons with multiple sclerosis. Hum. Mov. Sci. 2018, 58, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.; Gough, C.; Gordon, S.J. Inertial sensor reliability and validity for static and dynamic balance in healthy adults: A systematic review. Sensors 2021, 21, 5167. [Google Scholar] [CrossRef] [PubMed]
- Dalton, A.; Khalil, H.; Busse, M.; Rosser, A.; van Deursen, R.; ÓLaighin, G. Analysis of gait and balance through a single triaxial accelerometer in presymptomatic and symptomatic Huntington’s disease. Gait Posture 2013, 37, 49–54. [Google Scholar] [CrossRef]
- O’Brien, M.K.; Hidalgo-Araya, M.D.; Mummidisetty, C.K.; Vallery, H.; Ghaffari, R.; Rogers, J.A.; Lieber, R.; Jayaraman, A. Augmenting clinical outcome measures of gait and balance with a single inertial sensor in age-ranged healthy adults. Sensors 2019, 19, 4537. [Google Scholar] [CrossRef]
- Mancini, M.; Chiari, L.; Holmstrom, L.; Salarian, A.; Horak, F.B. Validity and reliability of an IMU-based method to detect APAs prior to gait initiation. Gait Posture 2016, 43, 125–131. [Google Scholar] [CrossRef]
- Patel, M.; Pavic, A.; Goodwin, V.A. Wearable inertial sensors to measure gait and posture characteristic differences in older adult fallers and non-fallers: A scoping review. Gait Posture 2020, 76, 110–121. [Google Scholar] [CrossRef]
- Leach, J.M.; Mancini, M.; Peterka, R.J.; Hayes, T.L.; Horak, F.B. Validating and calibrating the Nintendo Wii balance board to derive reliable center of pressure measures. Sensors 2014, 14, 18244–18267. [Google Scholar] [CrossRef]
- Shany, T.; Redmond, S.J.; Narayanan, M.R.; Lovell, N.H. Sensors-based wearable systems for monitoring of human movement and falls. IEEE Sens. J. 2011, 12, 658–670. [Google Scholar] [CrossRef]
- Hamm, J.; Money, A.G.; Atwal, A.; Paraskevopoulos, I. Fall prevention intervention technologies: A conceptual framework and survey of the state of the art. J. Biomed. Inform. 2016, 59, 319–345. [Google Scholar] [CrossRef]
- Wang, C.; Patriquin, M.; Vaziri, A.; Najafi, B. Mobility performance in community-dwelling older adults: Potential digital biomarkers of concern about falling. Gerontology 2021, 67, 365–373. [Google Scholar] [CrossRef] [PubMed]
- O’sullivan, M.; Blake, C.; Cunningham, C.; Boyle, G.; Finucane, C. Correlation of accelerometry with clinical balance tests in older fallers and non-fallers. Age Ageing 2009, 38, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Roman-Liu, D. Age-related changes in the range and velocity of postural sway. Arch. Gerontol. Geriatr. 2018, 77, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Howcroft, J.; Lemaire, E.D.; Kofman, J.; McIlroy, W.E. Elderly fall risk prediction using static posturography. PLoS ONE 2017, 12, e0172398. [Google Scholar] [CrossRef]
- Pizzigalli, L.; Cremasco, M.M.; Mulasso, A.; Rainoldi, A. The contribution of postural balance analysis in older adult fallers: A narrative review. J. Bodyw. Mov. Ther. 2016, 20, 409–417. [Google Scholar] [CrossRef]
- Panzer, V.P.; Bandinelli, S.; Hallett, M. Biomechanical assessment of quiet standing and changes associated with aging. Arch. Phys. Med. Rehabil. 1995, 76, 151–157. [Google Scholar] [CrossRef]
- Freitas, S.M.; Wieczorek, S.A.; Marchetti, P.H.; Duarte, M. Age-related changes in human postural control of prolonged standing. Gait Posture 2005, 22, 322–330. [Google Scholar] [CrossRef]
- Raymakers, J.; Samson, M.; Verhaar, H. The assessment of body sway and the choice of the stability parameter (s). Gait Posture 2005, 21, 48–58. [Google Scholar] [CrossRef]
- Masani, K.; Vette, A.H.; Kouzaki, M.; Kanehisa, H.; Fukunaga, T.; Popovic, M.R. Larger center of pressure minus center of gravity in the elderly induces larger body acceleration during quiet standing. Neurosci. Lett. 2007, 422, 202–206. [Google Scholar] [CrossRef]
- Lin, D.; Seol, H.; Nussbaum, M.A.; Madigan, M.L. Reliability of COP-based postural sway measures and age-related differences. Gait Posture 2008, 28, 337–342. [Google Scholar] [CrossRef]
- Tucker, M.G.; Kavanagh, J.J.; Barrett, R.S.; Morrison, S. Age-related differences in postural reaction time and coordination during voluntary sway movements. Hum. Mov. Sci. 2008, 27, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.B.; Taylor, W.R.; Madigan, M.L.; Nussbaum, M.A. The spectral content of postural sway during quiet stance: Influences of age, vision and somatosensory inputs. J. Electromyogr. Kinesiol. 2012, 22, 131–136. [Google Scholar] [CrossRef]
- Fujimoto, C.; Egami, N.; Demura, S.; Yamasoba, T.; Iwasaki, S. The effect of aging on the center-of-pressure power spectrum in foam posturography. Neurosci. Lett. 2015, 585, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liang, Y.-Y.; Wang, L.; Sheng, J.; Ma, S.-J. Reliability and validity of center of pressure measures for balance assessment in older adults. J. Phys. Ther. Sci. 2016, 28, 1364–1367. [Google Scholar] [CrossRef] [PubMed]
- Ghahramani, M.; Stirling, D.; Naghdy, F.; Naghdy, G.; Potter, J. Body postural sway analysis in older people with different fall histories. Med. Biol. Eng. Comput. 2019, 57, 533–542. [Google Scholar] [CrossRef]
- Johansson, J.; Nordström, A.; Gustafson, Y.; Westling, G.; Nordström, P. Increased postural sway during quiet stance as a risk factor for prospective falls in community-dwelling elderly individuals. Age Ageing 2017, 46, 964–970. [Google Scholar] [CrossRef]
- Montesinos, L.; Castaldo, R.; Pecchia, L. Wearable inertial sensors for fall risk assessment and prediction in older adults: A systematic review and meta-analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 573–582. [Google Scholar] [CrossRef]
- Sun, R.; Sosnoff, J.J. Novel sensing technology in fall risk assessment in older adults: A systematic review. BMC Geriatr. 2018, 18, 14. [Google Scholar] [CrossRef]
- Noamani, A.; Vette, A.H.; Rouhani, H. Instrumented Functional Test for Objective Outcome Evaluation of Balance Rehabilitation in Elderly Fallers: A Clinical Study. Gerontology 2022, 68, 1233–1245. [Google Scholar] [CrossRef]
- Barbeau, H.; Ladouceur, M.; Norman, K.E.; Pépin, A.; Leroux, A. Walking after spinal cord injury: Evaluation, treatment, and functional recovery. Arch. Phys. Med. Rehabil. 1999, 80, 225–235. [Google Scholar] [CrossRef]
- Scivoletto, G.; Romanelli, A.; Mariotti, A.; Marinucci, D.; Tamburella, F.; Mammone, A.; Cosentino, E.L.; Sterzi, S.; Molinari, M. Clinical factors that affect walking level and performance in chronic spinal cord lesion patients. Spine 2008, 33, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Scivoletto, G.; Di Donna, V. Prediction of walking recovery after spinal cord injury. Brain Res. Bull. 2009, 78, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.E.; Bae, H.; Yoon, T.S.; Kim, J.S.; Yi, T.I.; Park, J.S. Factors that influence quiet standing balance of patients with incomplete cervical spinal cord injuries. Ann. Rehabil. Med. 2012, 36, 530–537. [Google Scholar] [CrossRef]
- Tamburella, F.; Scivoletto, G.; Iosa, M.; Molinari, M. Reliability, validity, and effectiveness of center of pressure parameters in assessing stabilometric platform in subjects with incomplete spinal cord injury: A serial cross-sectional study. J. Neuroeng. Rehabil. 2014, 11, 86. [Google Scholar] [CrossRef]
- Datta, S.; Lorenz, D.J.; Harkema, S.J. Dynamic longitudinal evaluation of the utility of the Berg Balance Scale in individuals with motor incomplete spinal cord injury. Arch. Phys. Med. Rehabil. 2012, 93, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Sprigle, S.; Maurer, C.; Holowka, M. Development of valid and reliable measures of postural stability. J. Spinal Cord Med. 2007, 30, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.M.; Leahy, P.; Barker, S.P. Reliability of measurements obtained with a modified functional reach test in subjects with spinal cord injury. Phys. Ther. 1998, 78, 128–133. [Google Scholar] [CrossRef]
- Wirz, M.; Müller, R.; Bastiaenen, C. Falls in persons with spinal cord injury: Validity and reliability of the Berg Balance Scale. Neurorehabilit. Neural Repair 2010, 24, 70–77. [Google Scholar] [CrossRef]
- Datta, S.; Lorenz, D.J.; Morrison, S.; Ardolino, E.; Harkema, S.J. A multivariate examination of temporal changes in Berg Balance Scale items for patients with ASIA Impairment Scale C and D spinal cord injuries. Arch. Phys. Med. Rehabil. 2009, 90, 1208–1217. [Google Scholar] [CrossRef]
- Srisim, K.; Saengsuwan, J.; Amatachaya, S. Functional assessments for predicting a risk of multiple falls in independent ambulatory patients with spinal cord injury. J. Spinal Cord Med. 2015, 38, 439–445. [Google Scholar] [CrossRef]
- Musselman, K.E.; Arora, T.; Chan, K.; Alavinia, M.; Bone, M.; Unger, J.; Lanovaz, J.; Oates, A. Evaluating intrinsic fall risk factors after incomplete spinal cord injury: Distinguishing fallers from nonfallers. Arch. Rehabil. Res. Clin. Transl. 2021, 3, 100096. [Google Scholar] [CrossRef] [PubMed]
- Noamani, A.; Lemay, J.-F.; Musselman, K.E.; Rouhani, H. Characterization of standing balance after incomplete spinal cord injury: Alteration in integration of sensory information in ambulatory individuals. Gait Posture 2021, 83, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Noamani, A.; Lemay, J.-F.; Musselman, K.E.; Rouhani, H. Postural control strategy after incomplete spinal cord injury: Effect of sensory inputs on trunk–leg movement coordination. J. Neuroeng. Rehabil. 2020, 17, 141. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noamani, A.; Riahi, N.; Vette, A.H.; Rouhani, H. Clinical Static Balance Assessment: A Narrative Review of Traditional and IMU-Based Posturography in Older Adults and Individuals with Incomplete Spinal Cord Injury. Sensors 2023, 23, 8881. https://doi.org/10.3390/s23218881
Noamani A, Riahi N, Vette AH, Rouhani H. Clinical Static Balance Assessment: A Narrative Review of Traditional and IMU-Based Posturography in Older Adults and Individuals with Incomplete Spinal Cord Injury. Sensors. 2023; 23(21):8881. https://doi.org/10.3390/s23218881
Chicago/Turabian StyleNoamani, Alireza, Negar Riahi, Albert H. Vette, and Hossein Rouhani. 2023. "Clinical Static Balance Assessment: A Narrative Review of Traditional and IMU-Based Posturography in Older Adults and Individuals with Incomplete Spinal Cord Injury" Sensors 23, no. 21: 8881. https://doi.org/10.3390/s23218881
APA StyleNoamani, A., Riahi, N., Vette, A. H., & Rouhani, H. (2023). Clinical Static Balance Assessment: A Narrative Review of Traditional and IMU-Based Posturography in Older Adults and Individuals with Incomplete Spinal Cord Injury. Sensors, 23(21), 8881. https://doi.org/10.3390/s23218881